
INTRO TO DE RHAM COHOMOLOGY

MATTHEW A. NIEMIRO

Abstract. Some notes I wrote a while back to introduce myself to de Rham

cohomology. I’d recommend these to anyone who already knows basic algebraic

topology. These notes are NOT COMPLETE.
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1. The de Rham Cohomology

1.1. The Exact Sequence of Smooth Functions of R3. In calculus, one learns
that smooth functions f : R3 → R and F : R3 → R3 have the property that
div(curl(F )) = 0 and curl(grad(f)) = 0. One also learns that if curlF = 0 then F
is the divergence of a smooth scalar function, and possibly that if divF = 0 then F
is the curl of a smooth vector function. Implicitly developed is an exact sequence,
and a highly important one at that. It is the one below.

C∞ scalar
functions
R3 → R

C∞ vector
functions
R3 → R3

C∞ vector
functions
R3 → R3

C∞ scalar
functions
R3 → R

grad curl div

We may pass between this sequence and the cochain of differential forms on R3 by
the following identifications. For f : R3 → R, we may leave it as is, in which case it
is already a 0-form, or we may identify it with a 3-form via f ←→ f dx ∧ dy ∧ dz.
For F = (P,Q,R) : R3 → R3, we may identify it with a 1-form or a 2-form via

(P,Q,R)←→ P dx+Q dy +R dz,

(P,Q,R)←→ P dy ∧ dz −Q dx ∧ dz +R dx ∧ dy.

These four identifications are vector space isomorphisms between the spaces in
the exact sequence above and the spaces of differential forms, as in the following
diagram. Furthermore, the isomorphisms commute with exterior derivation, i.e.
the diagram is commutative.

C∞ scalar
functions
R3 → R

C∞ vector
functions
R3 → R3

C∞ vector
functions
R3 → R3

C∞ scalar
functions
R3 → R

Ω0(R3) Ω1(R3) Ω2(R3) Ω3(R3)

∼= ∼= ∼= ∼=

grad curl div

d d d

With this framework, the classical divergence, gradient, and curl of functions of R3

are special cases of the exterior derivative d. Exact forms correspond bijectively
with functions whose divergence or curl is zero, and closed forms with functions
which are the gradient or curl of another.

1.2. The Poincaré Lemma. A natural next step is to ask how the situation
changes if we change the domain of our forms to an open subset U of Rn. It turns
out that the properties of the associated cochain complex of forms

Ω0(U) Ω1(U) Ω2(U) · · ·d d

Vary depending on the topological structure of U . In 1887, Henri Poincaré proved
the first version of a now-classical result about this cochain complex, in particular
when it is exact. (In other words, when closed forms on U are always exact.)

Lemma 1.1 (The Poincaré Lemma). Every closed form on Rn is an exact form.
Equivalently, the cochain complex of forms associated to Rn is exact.
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We may restate this lemma for a slightly broader family of sets, which is the version
some sources canonize. It is not what Poincaré originally proved—but with some
extra machinery, the two turn out to be essentially equivalent. It is stated in terms
of contractible sets.

Definition 1.2. Suppose U is open in Rn. We say U is contractible if there is a
smooth map H : U × [0, 1]→ U such that H(u, 0) = u and H(u, 1) is constant.

Figure 1. A contractible set in R, a non-contractible set in R2,
and a contractible set in R3.

Figure 2. A visualization of a contraction of the third
contractible set in Figure 2. One should think of these as the

images of the original set under H as the second parameter varies.

Corollary 1.3 (Poincaré Lemma For Open Sets). Every closed form on a con-
tractible open subset of Rn is an exact form. Equivalently, the cochain complex of
forms associated to a contractible set is exact.

Some go even further and state Poincaré’s Lemma for contractible manifolds. We
delay this and omit any proofs of the other statements, for the same reason: it can
all be combed into a more fertile, cohesive program once we have some language of
de Rham cohomology.

That being said, we remark that Poincaré’s Lemma can be proven without the
aforementioned machinery, at least a version of it. Namely, one can prove the
lemma for open balls in Rn using only the Lie derivative, the fundamental theorem
of calculus, and the Cartan formula. With a little more work and no new ideas, it
can even be proven for star-convex sets, which are open sets with a point satisfying
a convexity condition.
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1.3. The de Rham Cohomology. We now consider domains with non-exact
cochain complexes of forms. First, we work out an example on such a domain.

Example 1.4. Consider the 1-form ω on the punctured plane R2 − 0
defined by

ω =
x dy − y dx
x2 + y2

.

One finds that dω = 0, so ω is closed. Is ω exact? Converting to polar
coordinates, we compute∫

S1

ω =

∫
S1

r cos θ · d(r sin θ)− r sin θ · d(r cos θ)

r2
=

∫
S1

dθ = ±2π.

Stokes’ theorem implies that if ω were exact then its integral around S1

would be zero. It is not, so ω is not exact. Of course, in this computation
we found that ω = dθ; the reason this does not mean ω is exact is because
θ is not continuous on all of R2 − 0.

The exterior derivative d satisfies d ◦ d = 0, hence exact forms are necessarily
closed regardless of domain. However, we have just seen that some domains have
closed forms which are not exact. Said differently, the cochain of forms associated
to a domain may fail to be exact. The de Rham cohomology of the domain measures
how the cochain differs from the underlying exact one.

Definition 1.5. We define the k-th de Rham cohomology of M to be the
quotient vector space

Hk(M) = {closed k-forms}/{exact k-forms}.

Elements of Hk(M) are equivalence classes of closed forms, called their cohomology
classes. Two closed forms which determine the same cohomology class are coho-
mologous. By definition, two forms are cohomologous if and only if they differ by
an exact form. We may refer to the de Rham cohomology of M as simply the
cohomology of M , if it is not ambiguous in context.

Definition 1.6. For an open set U of Rn, we have been calling the sequence

Ω0(U) Ω1(U) Ω2(U) · · ·d d

The cochain complex of forms associated to U . In fact, it already has a name: the
de Rham complex of U , or more generally, of a smooth manifold M . We may
refer to this complex by Ω•(M).

We now have two basic questions: what is the zero-th cohomology of a manifold
and where is the cohomology nontrivial?

Proposition 1.7. Suppose M has r connected components, then its zero-th de
Rham cohomology is H0(M) = Rr.

Proof. Since there are no nonzero exact 0-forms, H0(M) = {closed 0-forms}. Sup-
posing f is a closed 0-form, we have that on any chart (U, x1, . . . , xn),

df =
∑ ∂f

∂xi
dxi.
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Since df = 0, it must be that the ∂f/∂xi vanish on M . Thus, f is locally constant.
On a given connected component, f must then be constant, because it is smooth.
There are r connected components, hence f may be specified by an r-tuple of
real numbers, the value it takes on each component. This is what we wanted to
show. �

Proposition 1.8. For M an n-manifold, Hk(M) = 0 for k > n.

Proof. For k > n, the only k-form on M is the zero form. �

We next ask for the cohomology of a manifold that is the smooth image of
another. Recall that for F : N → M a smooth map of manifolds, we have the
pullback F ∗ : Ω∗(M)→ Ω∗(N) of forms.

Proposition 1.9. The pullback commutes with exterior derivation.

Proof. We are to show that for ω ∈ Ωk(M), F ∗(dω) = d(F ∗ω). The k = 0 case
is immediate. For k > 0, let p ∈ N and let (V, y1, . . . , ym) be a chart about F (p).
Then about F (p), ω =

∑
aIdyI . We compute

F ∗ω =
∑

(F ∗aI)F
∗dyI ,

=
∑

(aI ◦ F ) dFI ,

=⇒ d(F ∗ω) =
∑

d(aI ◦ F ) ∧ dFI .

On the other hand, F ∗(dω) =
∑
F ∗daI ∧ F ∗dyI =

∑
d(F ∗aI) ∧ dFI =

∑
d(aI ◦

F ) ∧ dFI . We conclude the desired equality. �

Proposition 1.10. The pullback sends closed forms to closed forms and exact
forms to exact forms.

Thus, we may speak of the linear pullback map in cohomology induced by F ∗ (or
F ), described by

F# : Hk(M)→ Hk(N), [ω] 7→ [F ∗(ω)].

Often, F# is also denoted F ∗, just as the pullback. We may make this convention,
of course clear in context.

Corollary 1.11. Evident from the preceding discussion, given a smooth map of
manifolds F : N →M , the following diagram is commutative.

H0(M) H1(M) H2(M) · · ·

H0(N) H1(N) H2(N) · · ·

F# F# F#

d d

dd

Here, d : Hk → Hk+1 is the map induced by d : Ωk → Ωk+1 defined by ω 7→ [dω].

Before seeing some computations, the last thing we introduce is the algebra
structure of Ω•(M). With the wedge product, Ω•(M) has a product structure.
This induces a product structure on cohomology, whose properties are given by the
following proposition.
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Proposition 1.12. We define a wedge of cohomology classes of forms to be the
cohomology class of their wedge. In symbols, for ω ∈ Hk(M) and τ ∈ H`(M),

[ω] ∧ [τ ] = [ω ∧ τ ] ∈ Hk+`(M).

This wedge has three important properties.

(1) The wedge product ω ∧ τ of two forms is closed.
(2) The cohomology class [ω ∧ τ ] is independent of the representative of [τ ].
(3) The cohomology class [ω ∧ τ ] is independent of the representative of [ω].

Definition 1.13. For M a smooth manifold, we define the cohomology ring of M

H∗(M)
def
=

∞⊕
k=0

Hk(M).

An element α of H∗(M) can be written either as a tuple (α0, α1, . . . ) or as a sum
α0 + α1 + . . . , where αi is a cohomology class in Hi(M). The latter is highly
preferred in this context. The cohomology ring H∗(M) is truthfully a ring, whose
multiplication is the wedge product. One adds and multiplies its elements just like
polynomials.

Since the wedge product sends k, l-forms to a (k + l)-form, H∗(M) is graded.
Since [ω] ∧ [`] = [(−1)klτ ∧ ω], H∗(M) is also anticommutative. Along with the
fact that H∗(M) is a vector space makes H∗(M) into an anticommutative graded
R-algebra.

1.4. Some de Rham Cohomologies. Now we compute the cohomology of some
spaces. By all means, our current methods for computing cohomology are primitive.
The machinery we are postponing will allow us to compute the cohomology for much
more complicated spaces.

Example 1.14 (Cohomology of R1). By Propositions 1.7 and 1.8,
H0(R1) = R and is zero elsewhere.

Example 1.15 (Cohomology of R3). By Propositions 1.7 and 1.8,
H0(R3) = R and Hk(R3) = 0 for k > 3. As for the other cases,
recall from the previous section that the we may pass to the de Rham
complex of R3 via isomorphisms from an exact sequence of smooth func-
tions of R3 which commute with d. This is sufficient to conclude that
the de Rham complex itself is exact. This implies that the remaining
cohomologies are trivial, i.e. are zero-dimensional. (Actually, we are
overlooking the most difficult part of this argument—it is quite nontriv-
ial that a smooth, zero-divergence vector field is the curl of another.)

Example 1.16 (Cohomology of S1). By Propositions 1.7 and 1.8,
H0(S1) = R and Hk(S1) = 0 for k > 1. We are left to compute
H1(S1).

Firstly, since S1 is one-dimensional, every 1-form on S1 is closed. So
we must determine the space of nonexact forms.

Let F : [0, 2π] → S1 be the parametrization of S1 defined by t 7→
(cos t, sin t), and let ω = −y dx+x dy be the nowhere-vanishing 1-form
we considered earlier. Since F ∗ω = dt, we have∫

S1

ω =

∫ 2π

0

dt = 2π.
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Stokes’ theorem implies exact 1-forms on S1 are in the kernel of the
integration map ϕ, defined by τ 7→

∫
S1 τ . Now write h : R → S1 to

denote the map t 7→ (cos t, sin t). Suppose α = fω is a 1-form on S1

in the kernel of ϕ; then f̄ = h∗f = f ◦ h is periodic of period 2π. One
computes ∫ 2π

0

f̄(t) dt = 0,

And a technical lemma asserts that this implies f̄ dt = dḡ for some
smooth, 2π-periodic ḡ, which satisfies dḡ = f̄(t) dt. Since smooth func-
tions on S1 correspond to smooth periodic functions of R via pullback,
we can write ḡ = h∗g for a smooth function g : S1 → R. On one hand,
we now have dḡ = h∗(dg). On the other, f̄(t) dt = h∗α. Since h∗ is
injective, we conclude α = dg. Thus, the kernel of ϕ is precisely the
space of exact forms on S1, so that it induces an isomorphism from
H1(S1) to R.
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2. Interlude One

Our goal now is to develop techniques for computing the cohomology of a mani-
fold. For we have seen that even in the simplest of cases, i.e. H1(S1), direct com-
putation is unattractive. The natural direction to proceed at this point is toward
the homotopy axiom for de Rham cohomology and the Mayer-Vietoris sequence. In
this section, we will lay down some groundwork so that the debut of these tools is
C∞ and painless.

The section is organized as follows. We will first develop the basic concepts of
category theory, namely a category and functor. Next, we will do the same for ho-
mological algebra, namely developing cochain complexes and cohomology in general.
Crucially, we will meet the long exact sequence in cohomology, whose existence is
the conclusion of the zig-zag lemma. Lastly, we will recall some topics involving
the word homotopy, proving that homotopic smooth maps between manifolds induce
the same map between de Rham cohomologies. (We avoid the term ‘homotopy the-
ory,’ as we are not studying homotopy groups, the overwhelming focus of homotopy
theory.)

Continually, we will move between abstracted concepts and their restrictions to
the subject at hand.

Algebraic topology
concerns mappings

from topology to
algebra. Category
theory gives us a

language to express
this.

May, A Concise Course

2.1. Some Category Theory.

Definition 2.1. A category C consists of the following:

(1) A set of objects Ob(C).
(2) For each pair A,B ∈ Ob(C), a set of morphisms MorC(A,B) from A to B,

such that for any f ∈ MorC(A,B) and g ∈ MorC(B,C), there exists a map
g ◦ f ∈ MorC(A,C) called the composite,

Subject to the following two rules:

(1) (Identity axiom) For each A, there is a morphism idA ∈ MorC(A,A) such
that for any x ∈ MorC(A,B) and y ∈ MorC(B,A),

x ◦ idA = x and idA ◦ y = y,

(2) (Associative axiom) And for any a ∈ MorC(A,B), b ∈ MorC(B,C), and
c ∈ MorC(C,D),

c ◦ (b ◦ a) = (c ◦ b) ◦ a.

It is essential that one sees examples of categories.

Examples 2.2 (Categories).
(1) The collection of sets together with the functions between them

forms a category.
(2) The collection of groups together with the homomorphisms be-

tween them forms a category.
(3) The collection of topological spaces together with the continuous

maps between them forms the continuous category.
(4) The collection of smooth manifolds together with the smooth

maps between them forms the smooth category.
(5) A pointed manifold is a pair (M, q) consisting of a manifold and

a point, the basepoint, in it. The collection of pointed manifolds
together with the smooth maps taking one basepoint to the other
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form the category of pointed manifolds. A similar category is the
category of pointed topological spaces.

Definition 2.3. A covariant functor F from one category C to another D is a
map that associates

(1) To each object A of C an object F(A) of D, and
(2) To each morphism f : A→ B a morphism F(f) : F(A)→ F(B),

Satisfying the functorial properties F(idA) = idF(A) and F(f ◦ g) = F(f) ◦ F(g).

Figure 3. A schematic to convey how a covariant functor F
from one category C to another D acts on its objects and the

morphisms between them.

Example 2.4 (Tangent space as a functor). When we construct the
tangent space to a manifold, we specify the manifold N and a point p
on it; i.e. we require a pointed manifold. The result is a vector space,
TpN . To each smooth map f : (N, p) → (M,f(p)), we associate the
differential f∗,p : TpN → Tf(p)M . The differential of the identity map
on N is the identity map, and the chain rule

(g ◦ f)∗,p = g∗,f(q) ◦ f∗,p
Is the second functorial property. So, the tangent space construction is
a functor from smooth pointed manifolds to vector spaces.

Example 2.5 (π1 as a functor). The fundamental group of a pointed
topological space (X,x0), denoted π1(X,x0), is the homotopy class of
continuous images of [0, 1] in X based at x0 (i.e. which start and end at
x0), given a group structure by the operation of path concatenation. For
a continuous map of pointed topological spaces f : (X,x0) → (Y, y0),
there is an induced homomorphism of fundamental groups sending each
homotopy class of loops to the (unique) homotopy class of the image
of their representatives under f . This is usually denoted f∗. However,
it may equally be written π1(f) since π1 is well-known to satisfy the
functorial properties and hence is a functor, one from the category of
pointed topological spaces to the category of groups.

Definition 2.6. Two objects A,B are isomorphic if there are morphisms f : A→
B and g : B → A satisfying g ◦ f = idA and f ◦ g = idB . These f, g are called
isomorphisms.
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Proposition 2.7. A functor takes isomorphisms to isomorphisms.

Proof. Suppose f : A → B, g : B → A are isomorphisms whose compositions are
id. Then F(f ◦ g) = F(idB). By the definition of a functor, we have F(f) ◦F(g) =
idF(B). Likewise, F(g) ◦ F(f) = idF(A). Thus F(f),F(g) are isomorphisms. �

Definition 2.8. A contravariant functor F from one category C to another
D is a map whose properties are identical to that of a covariant functor, except
F(f ◦ g) = F(g) ◦ F(f) rather than F(f) ◦ F(g).

In the following example, we will see a particularly relevant contravariant functor.

Example 2.9 (Pullback as a contravariant functor). A smooth map of
manifolds F : N → M induces the pullback F ∗ : Ω•(M) → Ω•(N). If
F : N → N is the identity, F ∗ is the identity on the differential forms
of N . This is the first functorial property. Pullback also has the second
contravariant functorial property, and so is a contravariant functor.

We have also seen in the previous section that the smooth map
F : N → M induces the linear pullback map in cohomology, F# :
Hk(M) → Hk(N), defined by F#([ω]) = [F ∗(ω)]. This definition in
terms of ∗ (pullback), which we know to have the contravariant func-
torial properties, gives for free that # (pullback in cohomology) has
the contravariant functorial properties. Thus, pullback in cohomology
is a contravariant functor from the category of smooth manifolds with
smooth maps (the smooth category) to the category of vector spaces
with linear maps.

In fact, we have seen that an R-algebra can be formed as the direct
sum of all the cohomologies of a manifold, in which case F# : Ω∗(M)→
Ω∗(N) is a linear map of R-algebras (still vector spaces, but a ‘smaller
category’ of them.) With this perspective, Ω• is a contravariant functor,
one from the category of smooth manifolds and smooth maps between
them to the category of commutative differential graded algebras and
their homomorphisms. In fact, it is the unique such functor that is the
pullback of functions on Ω0(Rn).

Corollary 2.10. By the discussion in the previous example, for F : N → M a
diffeomorphism of manifolds, the pullback F# : Hk(M)→ Hk(N) is a vector space
isomorphism. We conclude that de Rham cohomology is diffeomorphism-invariant.

2.2. Cochain Complexes.

Definition 2.11. A cochain complex C is a collection of vector spaces {Ci}Z
such that there are linear maps dk : Ck → Ck+1

· · ·C−1 d−1−−−→ C0 d0−−→ C1 d1−−→ C2 −−→ · · ·
Satisfying dk ◦ dk−1 = 0. We often abbreviate dk to d and call it the differential.

Definition 2.12. A sequence of homomorphisms of vector spaces (or groups, or

modules. . . ) A
f−→ B

g−→ C Is called exact at B if Im f = Ker g. An exact sequence
is one exact at every term. A short exact sequence is a five-term sequence with 0
at each end.

Proposition 2.13. Certain exact sequences have important properties.
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(1) 0→ A
g−→ B is exact iff g is injective.

(2) A
f−→ B → 0 is exact iff f is surjective.

(3) 0→ A
f−→ B → 0 is exact iff f is an isomorphism.

(4) 0 → A
f−→ B

g−→ C → 0 is exact iff f is injective, g is surjective, and
Ker g = Im f . In this case, g induces an isomorphism C ∼= B/Im f .

One should feel that we have just redefined, in slightly more general terms, phe-
nomena we have seen before. We do the same now for cohomology.

Definition 2.14. Since Im dk−1 = Ker dk, we may form the quotient vector space

Hk(C) =
Ker dk

Im dk−1
,

Called the k-th cohomology vector space of C. Elements of Ck are degree k-
cochains or k-cochains of C. The k-cochains in Ker dk is called a k-cocyle, and
likewise a k-coboundary if it lies in the image of dk−1. The equivalence class of a
k-cocycle c, denoted [c], is its cohomology class. We may denote the set of cocycles
by Zk(C), and the set of coboundaries by Bk(C).

Definition 2.15. Suppose A,B are two cochain complexes with differentials d and
d′, respectively. A cochain map ϕ is a collection of maps ϕk : Ak → Bk that
commute with d and d′, meaning d′ ◦ ϕk = ϕk+1 ◦ d. In other words, the following
diagram is commutative.

· · · Ak−1 Ak Ak+1 · · ·

· · · Bk−1 Bk Bk+1 · · ·

ϕk−1 ϕk ϕk+1

d

d′

d

d′

Whenever we speak of a cochain map ϕ : A→ B, we may also consider the naturally
induced map ϕ∗ : Hk(A)→ Hk(B) defined by [c] 7→ [ϕ(c)].

Example 2.16 (Cohomology as a functor). The collection of cochain
complexes together with the cochain maps between them form a cat-
egory. For a complex C, we associate to it the complex of its co-
homology spaces H∗(C). To a cochain map f : C → D, we asso-
ciate to it a cochain map H∗(f) : H∗(C) → H∗(D). We have that
H∗(gf) = H∗(g)H∗(f) and H∗(idC) = idH∗(C), hence H∗ is a covari-
ant functor, the cohomology functor.

Example 2.17 (Pullback as a cochain map). A smooth map of mani-
folds F : N → M induces the pullback F ∗ : Ω•(M) → Ω•(N). We
have proven that F ∗ commutes with d. So, F ∗ is a cochain map.
We have also seen that F ∗ induces the pullback in cohomology F# :
H∗(M) → H∗(N) defined by [ω] 7→ [F ∗(ω)], and this commutes with
the d : Hk → Hk+1 naturally induced by the differential d. This F# is
the map in de Rham cohomology naturally induced by F ∗, the pullback
in forms.
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Next, given a sequence of cochains and cochain maps between them, we construct
an important homomorphism, the connecting homomorphism.

Definition 2.18. Suppose A,B,C are complexes such that 0→ A
i−→ B

j−→ C → 0

is short exact in the sense that in each dimension k, the sequence 0 → Ak
ik−→

Bk
jk−→ Ck → 0 is exact.

...
...

...

0 Ak+1 Bk+1 Ck+1 0

0 Ak Bk Ck 0

0 Ak−1 Bk−1 Ck−1 0

...
...

...

i j

i

dA

j

dB dC

i

dA

j

dB dC

Given a short exact sequence of
complexes as at right, we will con-
struct a certain homomorphism d∗ :
Hk(C) → Hk+1(A). Begin with
[c] ∈ Hk(C). By exactness, j is onto,
hence c = j(b) for some b ∈ Bk.
Then dBb ∈ Bk+1. In fact, dBb is in
the kernel of j, since (j◦dB)b = (dC ◦
j)b by commutativity, which equals
dCc, which equals 0 as c is a cocy-
cle. Then by exactness, dBb = i(a)
for some a ∈ Ak+1.

We take d∗([c]) = [a]. This d∗ :
Hk(C) → Hk+1(A) is a homomor-
phism. Well-definedness follows es-
sentially from the fact that for any c+ dCe ∈ Ck, which are all the representatives
of [c], the exact part dCe is killed by a second application of dC . We call d∗ the
connecting homomorphism.

Lemma 2.19 (Zig-zag lemma). Suppose A,B,C are cochain complexes such that

0→ A
i−→ B

j−→ C → 0 is exact. Then there is a long exact sequence in cohomology

Hk+1(A) · · ·

Hk(A) Hk(B) Hk(C)

· · · Hk−1(C)

i∗

i∗

j∗

j∗

d∗

d∗

Here, i∗ and j∗ are the maps induced by i and j (equivalently, the images of i and
j under the cohomology functor) and d∗ is the connecting homomorphism.

To prove this lemma, one must demonstrate exactness at A, B, and C in every
dimension. The technique used is called diagram chasing in homological algebra.

I’ve got a funny i0xd

about topology.

u/lector57

2.3. Not Homotopy Theory.

Definition 2.20. Two continuous maps f, g : X → Y between topological spaces
are called homotopic if there exists a homotopy H : X × [0, 1] → Y such that
H is continuous, H(x, 0) = f(x), and H(x, 1) = g(x). If in addition X and Y are
smooth manifolds and H is smooth, we say H is a smooth homotopy of f and g,
which are in this case smoothly homotopic.



INTRO TO DE RHAM COHOMOLOGY 13

Definition 2.21. Suppose F,G : M → N are smooth maps of manifolds. A
collection of linear maps h : Ωk(N)→ Ωk−1(M) such that

d(hω) + h(dω) = G∗ω − F ∗ω
Is called a homotopy operator between F ∗ and G∗, a case of the more general
cochain homotopy.

A homotopy operator is useful because if ω is closed, then (d(hω) + h(dω))# =
[d(hω) + h(dω)] = [d(hω)] = 0, hence F# = G#. Thus, proving two smooth maps
induce the same map between cohomologies amounts to proving a homotopy oper-
ator exists between their pullbacks. We will use this to show that (not necessarily
smoothly) homotopic smooth maps induce the same map on cohomologies. The
homotopy axiom for de Rham cohomology is essentially a simpler instance of this,
so we prove it along with the homotopy axiom itself in the next section.

We will need two lemmas, the first of which is a special case of the endgame
result. A proof is omitted, for it uses several tools (the Lie derivative, Cartan’s
formula, the interior product) not developed here. A proof can be found in [Lee].
We will also need a significant theorem regarding the approximation of continuous
maps between manifolds by smooth ones.

Lemma 2.22. Suppose M is a smooth manifold, with or without boundary. Let
it : M →M×[0, 1] be the map it(p) = (p, t). Then there exists a homotopy operator
between their pullbacks i∗0, i

∗
1 : Ω•(M × [0, 1])→ Ω•(M).

Theorem 2.23 (Whitney’s Approximation theorem). Suppose F,G : M → N are
homotopic smooth maps between smooth manifolds with or without boundary, then
F and G are smoothly homotopic.

Lemma 2.24. Suppose F,G : M → N are homotopic smooth maps between smooth
manifolds, with or without boundary. Then the induced maps F#, G# : Hk(N) →
Hk(M) are the same map in every dimension k.

Proof. By Lemma 2.22, the maps in cohomology i#0 , i
#
1 : H∗(M × [0, 1])→ H∗(M)

are the same. By Whitney’s approximation theorem, there is a smooth homotopy
H : M × [0, 1]→ N between F and G. We may write F = H ◦ i0 and G = H ◦ i1,
from which we have

F# = (H ◦ i0)# = i#0 ◦H# = i#1 ◦H# = (H ◦ i1)# = G#.

�
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3. The Homotopy Axiom

In this section, we will prove that de Rham cohomology is homotopy-invariant.
This will follow as what is essentially a special case of the result that homotopic
smooth maps between smooth manifolds induce the same map on de Rham coho-
mologies. This homotopy invariance is surprising, for the de Rham groups of a
manifold depend on its smooth forms, so we should have little expectation that a
non-smooth homotopy (which may change the smooth structure) would leave these
groups unchanged.

Another conundrum is more pedantic: why do we refer to the homotopy axiom, a
result we shall prove, as an axiom? This naming is in consultation with the broader
study of (co)homologies in general. The homotopy axiom is one of the five listed
by Eilenburg and Steenrod in 1952 in their definition of a (co)homology theory as
part of their successful attempt to axiomatize, largely by the use of category theory
(which they also established), the many variations of (co)homology popping up at
the time. The homotopy axiom for de Rham cohomology we are concened with here
is the homotopy axiom posited in the definition of a (co)homology theory.

Theorem 3.1 (Homotopy Axiom for de Rham Cohomology). If M and N are
homotopy equivalent smooth manifolds with or without boundary, then Hk(M) ∼=
Hk(N) in every dimension k. In other words, de Rham cohomology is a homotopy
invariant.

Proof. Let F : M → N be a homotopy equivalence with homotopy inverse G :
N →M . By Theorem 2.23, there exist smooth maps F̃ : M → N and G̃ : N →M
homotopic to F and G, respectively. We have that F̃ ◦ G̃ ' F ◦ G ' idN and
likewise G̃ ◦ F̃ ' idM , thus F̃ and G̃ are homotopy inverses of each other.

By Lemma 2.24, F̃# ◦G̃# = (G̃◦ F̃ )#. By the above, we know this to be equal to

(idM )# = idH∗(M). Likewise, G̃# ◦ F̃# = idH∗(N). Thus, F̃# : H∗(N) → H∗(M)
is an isomorphism. �

Corollary 3.2. Since a homeomorphism is a homotopy equivalence, de Rham co-
homology is a topological invariant.

3.1. Applications. As promised, we can now obtain the Poincaré lemma with
ease, for any contractible (i.e. homotopy equivalent to a point) manifold.

Lemma 3.3 (Poincaré Lemma). Suppose M is a contractible manifold, then H0(M) =
R and Hk(M) = 0 for k > 0.

Proof. Since M is contractible, by Corollary 3.2 its cohomologies are that of a point.
One easily finds that H0({pt}) = R and 0 otherwise. �

The homotopy axiom is useful for simplifying the computation of a complicated
space’s cohomology to that of a more familiar one. In general, though, we still need
more machinery to explicitly compute the cohomologies of these familiar spaces. In
the next section, we develop the Mayer-Vietoris sequence, which aids us in doing
exactly that.

Example 3.4 (Cohomology of Rn). The n-dimensional Euclidean space
Rn is contractible, hence it has trivial cohomology in all dimensions.

Example 3.5 (Cohomology of Rn − 0). The punctured space Rn − 0
deformation retracts onto Sn−1, hence Hk(Rn − 0) = Hk(Sn−1).
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Example 3.6 (Cohomology of a Möbius strip). The Möbius strip ad-
mits a retract onto its core circle by collapsing its edge. This core circle
is homotopy equivalent to S1, hence the cohomology of the Möbius strip
is that of S1.
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4. The Mayer-Vietoris Sequence

The Mayer-Vietoris sequence is a powerful tool for computing cohomology groups,
relating a space’s cohomology to those of an open cover’s constituents. Beginning
with a manifold M and an open cover {U, V }, consider the diagram of inclusions
and the diagram of their induced maps under the pullback functor Ω•:

U Ω•(U)

M U ∩ V Ω•(M) Ω•(U ∩ V )

V Ω•(V )

jUιU

jV
ιV

ι∗U j∗U

ι∗V j∗V

Here, ιU , ιV are the inclusions of U and V into M , respectively, and likewise for
jU , jV . The induced pullbacks are simply the maps restricting domain. For in-
stance, i∗Uω = ω|U . Now, we may assemble a sequence of de Rham complexes

0 −→ Ω•(M) −→ Ω•(U)⊕ Ω•(V ) −→ Ω•(U ∩ V ) −→ 0

σ 7−→ (ι∗Uσ, ι
∗
V σ)

(ω, τ) 7−→ j∗V τ − j∗Uω

Proposition 4.1. The above sequence of de Rham complexes is exact.

Proof. Exactness at Ω•(M) is immediate. Exactness at Ω•(U)⊕Ω•(V ) is similarly
straightforward.

For exactness to hold at Ω•(U ∩ V ), we must check that the difference map
is surjective. Let {ρU , ρV } be a partition of unity subordinate to {U, V }. For
ω ∈ Ω•(U ∩ V ), we define

ωU =

{
ρV (x)ωx if x ∈ U ∩ V,
0 if x ∈ U − (U ∩ V ).

Likewise for ωV . Now, ωU is defined (in fact, smooth) on all of U , and likewise for
ωV . On U ∩ V , (−ωU , ωV ) restricts to (−ρV ω, ρUω). Then under the difference
map, (−ωU , ωV ) ∈ Ωk(U)⊕Ωk(V ) maps to ρV ω−(−ρUω) = ω. Thus, the difference
map is surjective, and the sequence is exact. �

Definition 4.2. Recall the zig-zag lemma (Lemma 2.19), which constructs a long
exact sequence in cohomology from a short exact sequence of chain complexes.
Applying this to the exact sequence of complexes just discussed, we get a long
exact sequence, the Mayer-Vietoris sequence

Hk+1(M) · · ·

Hk(M) Hk(U)⊕Hk(V ) Hk(U ∩ V )

· · · Hk−1(U ∩ V )

ι∗

ι∗

j∗

j∗

d∗

d∗
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In this sequence, ι∗ and j∗ are the maps induced by the inclusion and difference
maps, respectively. They are given by

ι∗[σ] = ([σ|U ], [σ|V ]),

j∗([τ ], [ω]) = [τ |U∩V − ω|U∩V ].

Next, to describe d∗ we recall the diagram chase by which it was constructed, in
this context of forms. Given [ω] ∈ Hp−1(U ∩ V ), we arrive at d∗[ω] ∈ Hp(M) as
follows:

(1) By exactness, there is a θ ∈ Ω•(U) ⊕ Ω•(V ) such that jθ = ω, namely
θ = (−ωV , ωU ).

(2) The form dθ = (−dωV , dωU ) maps to zero under j since jdθ = djθ = 0. By
exactness, there is an α ∈ Ω•(M) such that ια = (ιV α, ιUα) = dθ. In other
words, −dωV and dωU patch together into a higher-order form α defined
on all of M .

(3) Take d∗[ω] = [α] ∈ Hp+1(M). As discussed earlier, this is well-defined.

4.1. Applications.
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5. Interlude Two

A virtue of (co)homology theories is that certain (co)homologies will agree on
certain classes of spaces. This can be practically useful, or at least illuminating,
as some (co)homologies lend themselves to computation or geometrization more
readily than others. In the next two sections, we will develop some (co)homology
theories closely related to de Rham cohomology:

(1) Singular homology, which should be a familiar face to the reader with
some background in algebraic topology. It is defined for general topolog-
ical spaces. Alongside it, we will develop its smooth variant, defined for
smooth manifolds. Then, for both homologies we will introduce their dual
cohomology theories.

(2) Ĉech cohomology, which the reader is not expected to have seen before. In

general, Ĉech cohomology may refer to a number of things; a modern and
efficient notion is phrased in the language of sheaf theory and category the-
ory, in which Ĉech cohomology is more like an algorithm to compute sheaf
cohomology (which is a very general class of cohomologies parametrized by
(pre)sheaves) than an actual cohomology theory. For our first encounter

with Ĉech cohomology, however, we will limit our perspective to only in-
tersect the essential portions of sheaf and category theory. In particular,
we fix the presheaf we are working over. This restriction is motivated by
the belief that an all-at-once approach would greatly obscure the purpose
of the theory in the first place.

We shall see that all these cohomologies (singular, smooth singular, and Ĉech ‘with
values in the constant presheaf’) agree on smooth manifolds. That H∗dR and H∗sng

agree is de Rham’s theorem. This result expresses a fundamental relationship be-
tween the analytic properties (e.g. solutions to differential equations dω = σ) and
topological properties (e.g. twists and holes) of smooth manifolds. The fact that

H∗dR and Ĉech cohomology agree is sometimes also called de Rham’s theorem, or
its modern version, or its sheaf-theoretical version.

5.1. The Five-Lemma. We will need a result from homological algebra in the
next section, called the five-lemma. For its proof, we will use two lemmas, the four-
lemmas. All three statements refer to the following commutative diagram, whose
rows are exact and whose objects lie in the same abelian category (e.g. vector
spaces over a field, abelian groups, ...).

A B C D E

A′ B′ C ′ D′ E′

f g h j

qpnml

r s t u

Lemma 5.1 (Four-lemma one).

Lemma 5.2 (Four-lemma two).

Lemma 5.3 (Five-lemma).
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5.2. Axioms for (Co)homology Theories. Soon, we will be handling a number
of things carrying the word ‘(co)homology.’ In this subsection, we will make precise
what a (co)homology theory is. One might ask whether this should be done after
these new (co)homologies have been developed. The answer is ‘perhaps,’ but we
point out that (i) we are supposing some exposure to (co)homology already, par-

ticularly singular homology, and (ii) the Ĉech cohomology we will see is not truly a
cohomology theory. Also, we will be using this axiomatic framework to avoid direct
and highly-technical proofs, namely the original proof of de Rham’s theorem, the
convenience of which cannot be understated.

The basic motivation for these axioms is to succinctly capture the properties of
various (co)homologies. Hereafter, a pair (X,A) refers to a topological space X
and a subspace A, possibly empty.

Definition 5.4 (Homology theory). A homology theory consists of:

(1) A sequence of functors Hn from the category of pairs of spaces to the
category of abelian groups, indexed by Z, and

(2) A sequence of natural transformations ∂ : Hn(X,A)→ Hn−1(A,∅),

Satisfying the following axioms.

Dimension: If X is a point, then H0(X) is nonzero only for n = 0.
Exactness: The following sequence is exact, where unlabeled arrows are in-

duced by the inclusions A ↪→ X and (X,∅) ↪→ (X,A):

· · · −→ Hk(A) −→ Hk(X) −→ Hk(X,A)
∂−−→ Hk−1(A) −→ · · ·

Excision: If (X;A,B) is such that A,B are subspaces of X whose interiors
together cover X, then the inclusion (A,A ∩ B) ↪→ (X,B) induces an
isomorphism

H∗(A,A ∩B) −→ H∗(X,B).

Additivity: If (X,A) is the disjoint union of a set of pairs (Xi, Ai), then
their inclusions into (X,A) induce an isomorphism⊕

i

Hi(Xi, Ai) −→ H(X,A).

Homotopy: If f, g : (X,A)→ (Y,B) are homotopic, then their images under
Hn (denoted f∗, g∗) are identical as homomorphisms from Hn(X,A) to
Hn(Y,B).

Definition 5.5 (Cohomology theory). A cohomology theory consists of:

(1) A sequence of contravariant functors Hn from the category of pairs of spaces
to the category of abelian groups, indexed by Z, and

(2) A sequence of natural transformations δ : Hn(A,∅)→ Hn+1(X,A),

Satisfying the following axioms.

Dimension: If X is a point, then H0(X) is nonzero only for n = 0.
Exactness: The following sequence is exact, where unlabeled arrows are in-

duced by the inclusions A ↪→ X and (X,∅) ↪→ (X,A):

· · · −→ Hk(X,A) −→ Hk(X) −→ Hk(A)
δ−−→ Hk+1(X,A) −→ · · ·
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Excision: If (X;A,B) is such that A,B are subspaces of X whose interiors
together cover X, then the inclusion (A,A ∩ B) ↪→ (X,B) induces an
isomorphism

H∗(X,B) −→ H∗(A,A ∩B).

Additivity: If (X,A) is the disjoint union of a set of pairs (Xi, Ai), then
their inclusions into (X,A) induce an isomorphism

H(X,A) −→
⊗
i

Hi(Xi, Ai)

Homotopy: If f, g : (X,A)→ (Y,B) are homotopic, then their images under
Hn (denoted f∗, g∗) are identical as homomorphisms from Hn(Y,B) to
Hn(X,A).

Definition 5.6. For a (co)homology theory, H0({pt}) = G is called the coefficient
group of the theory.

Cohomology theories are dual to homology theories. This duality is clear directly
from their definitions, i.e. as functors vs. contravariant functors. In general, ho-
mology and cohomology do not carry exceptionally different information. However,
cohomology has a naturally richer structure as a result of contravariance; we refer
the reader to [Hatcher] for more on this.

5.3. Mayer-Vietoris Sequences. For our purposes, the most important fact about
(co)homology theories is that they come with Mayer-Vietoris sequences. Said se-
quences between homology and cohomology theories are strikingly similar, down to
proofs and construction. For this reason, conciseness, and because we will be mostly
concerned with cohomology, we will develop only the Mayer-Vietoris sequence for
cohomology theories.

We start with two preliminaries.

Lemma 5.7. Suppose (X,A,B) is such that B is a subspace of A a subspace of
X. Then the following sequence is exact:

· · · −→ Hq(X,A)
j∗−−→ Hq(X,B)

i∗−−→ Hq(A,B)
δ−−→ Hq+1(X,A) −→ · · ·

Where j : (X,B) ↪→ (X,A) and i : (A,B) ↪→ (X,B) are the inclusions, and δ is
the composition

Hk(A,B) −→ Hq(A)
δ−−→ Hq(X,A).

Lemma 5.8. Suppose (X;A,B) is such that A,B are subspaces of X whose in-
teriors cover X. Let C = A ∩ B. Then the inclusions (A,C) ↪→ (X,C) and
(B,C) ↪→ (X,C) induce an isomorphism

H∗(X,C)
∼=−−→ H∗(A,C)⊕H∗(B,C).

Theorem 5.9 (Mayer-Vietoris sequence). Let (X;A,B) and C be as in the pre-
ceding lemma. Then the following sequence is exact:

· · · −→ Hk(X)
φ∗−−→ Hk(A)⊕Hk(B)

ψ∗−−→ Hk(C)
∆∗−−→ Hk+1(X) −→ · · ·

Where, if i : C ↪→ A, j : C ↪→ B, q : A ↪→ X, and ` : B ↪→ X are the inclusions,
then

φ∗(χ) = (q∗(χ), `∗(χ)), and ψ∗(α, β) = i∗(α)− j∗(β),
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And ∆∗ is the composition

Hk(C) −→ Hk(A,C)
∼=−−−−−→

excision
Hk(X,B)

δ−−→ Hk+1(X).
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6. Singular (Co)homology

6.1. Singular Homology. We are assuming some background in algebraic topol-
ogy, so our recollection of singular homology will be brief.

Definition 6.1. We denote by ∆k the standard k-simplex in Rk+1, defined to
be the convex hull of the standard basis vectors in Rk+1.

Definition 6.2. Suppose X is a topological space. A singular k-simplex in X
is a continuous map σ : ∆k → X. We denote by Ck(X) the free abelian group
generated by the singular k-simplices in X, whose elements are called singular
k-chains. In symbols,

Ck(X) = FAb {(σ : ∆k → X) : σ is continuous}.

Definition 6.3. We denote by ∂k : Ck(X) → Ck−1(X) the boundary map
defined by

∂kσ =

k∑
i=0

(−1)iσ|e0,...êi,...,ek

where σ|e0,...êi,...,ek is the restriction of σ to the (k − 1)-simplex whose vertices are
e0, . . . ek with ei omitted.

Definition 6.4. The maps ∂ satisfy ∂k ◦ ∂k+1 = 0, hence for a space X we have
its singular chain complex

C0(X)
∂←− C1(X)

∂←− C2(X)← · · ·

Analogous to cohomology, we define the n-th singular homology group of X to
be quotient

Hsing
n (X)

def
=

Ker ∂n
Im ∂n+1

.

This defines a homology theory.

6.2. Smooth Singular Homology. We will eventually establish an isomorphism
between de Rham cohomology and singular cohomology by integrating forms over
singular chains. However, singular chains in general are only continuous, whereas
integration requires a pullback with respect to a smooth map. This turns out to be
a nonissue, in the sense that it is ‘good enough’ to look only at smooth simplices.
This is the smooth equivalence. To make this precise, let us quickly develop smooth
singular homology.

Suppose U is a subset of Rn. A continuous map f : U →M is smooth on V ⊆ U
(possibly a point) if it extends to a smooth map in an open neighborhood of V in Rn.
A smooth k-simplex is simply a smooth map σ : ∆k → M . We define smooth
singular k-chains and smooth singular homology groups H∞n (M) of M for
smooth k-simplices exactly as we did singular k-chains and singular homology for
arbitrary k-simplices.

It turns out that smooth singular homology is isomorphic to the usual singular
homology, making the smoothness requirement for integration a nonissue. We prove
this nontrivial fact in the next subsection.
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6.3. The Smooth Equivalence. The free abelian group generated by smooth k-
simplices C∞k (M) is a subgroup of Ck(M). The inclusion ι : C∞k (M) ↪→ Ck(M)
commutes with ∂, i.e. it is a chain map, so it naturally induces a well-defined map
ι∗ : H∞k (M)→ Hk(M) given by [σ] 7→ [ισ].

Theorem 6.5 (Smooth equivalence). The map ι∗ : H∞k (M) → Hk(M) is an
isomorphism.

The proof of Theorem 6.5 involves some lengthy technical adventures, so we will
settle for a proof sketch. A thorough proof can be found in [Lee].

Proof sketch. We summarize the proof in steps.

(1) We will need two lemmas, the first being the one below. Here, a boundary
face of a simplex is a subsimplex generated by all but one of the vertices
from the original simplex.

Lemma 6.6. Suppose f : ∆k →M is continuous, and furthermore smooth
when restricted to each boundary face of ∆k. Then f is smooth as a map
on the entirely of ∂∆k.

The proof of this lemma begins with the observation that an arbitrary
point x of ∂∆k lies in at most k of its faces, say j. If ∂i∆k enumerates the
j faces containing x, our hypothesis is that there are open sets Ui ⊆ ∂i∆k

so that f extends to a smooth f̃i : Ui → M . Rearranging the simplex
diffeomorphically if needed, one constructs inductively (on j) a smooth

map f̃ :
⋃
Ui → M that coincides with f on ∂i∆k, defined in terms of

f̃0, f̃j . An observation useful to this proof is that by appealing to locality,
possibly after replacing U by a subneighorhood, we may regard f as a map
to a coordinate patch about f(x) which can be identified with Rm.

(2) Next, we prove a second lemma.

Lemma 6.7. For each singular k-simplex σ : ∆k → M , there exists a
continuous map Hσ : ∆k × [0, 1] → M such that the following properties
hold:

I Hσ is a homotopy from σ(x) = Hσ(x, 0) to a smooth k-simplex σ̃(x) =
Hσ(x, 1).

II For each inclusion of a boundary face Fi,k : ∆k−1
∼= ∂i∆k ↪→ ∆k,

Hσ◦Fi,k
(x, t) = Hσ(Fi,k(x), t), where (x, t) ∈ ∆k−1 × [0, 1].

III If σ is a smooth k-simplex, then Hσ is the constant homotopy.

One proceeds by constructing the homotopies Hσ by induction on k. The
base case is trivial, as the arbitrary 0-simplex is already smooth. For higher
k, if σ is smooth, then the constant homotopy is straightfowardly checked
to satisfy I-III. For non-smooth σ, we consider the subset

S
def
= (∆k × {0}) ∪ (∂δk × [0, 1])∆k × [0, 1]

and a map H0 : S →M defined by

H0(x, t)
def
=

{
σ(x) x ≤ x ∈ ∆k, t = 0,

Hσ◦Fi,k
(F−1
i,k (x).t) x ∈ ∂i∆k, t ∈ [0, 1].

One verifies that H0 is continuous on overlapping sections, hence H0 is
continuous as a function of S by the gluing lemma. Since S is a retraction
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of ∆k×[0, 1] (for example, by radial projection), H0 extends to a continuous
map H : ∆k × [0, 1]→M by precomposing it with the retraction. This H
is a homotopy between σ and some other singular simplex σ′(x) = H(x, 1)
which satisfies II by construction.

Next, we must extend H to be a homotopy between σ and a smooth sim-
plex σ′′, since σ′ is not necessarily smooth. One checks that σ′ is continuous
on each of ∂i∆k×{1} so that Lemma 6.7 applies. Thus, H0 is smooth as a
function of ∆k×{1}. Denote the continuous extension of σ′ by σ′′ : U →M ,
where U is a neighborhood of σ′. By Theorem 2.23, we can extend σ′′ to
a smooth map by a new homotopy K such that K(x, t) = σ′′(x) whenever
x is in ∂∆k. This K restricts to a homotopy G between σ′ to a smooth

singular simplex σ̃(x)
def
= K(x, 1). Finally, one patches together H and K

appropriately and verifies that the new map G is a homotopy from σ to σ̃,
and that it satisfies properties I and II.

(3) Finally

�

6.4. Singular Cohomology. To state de Rham’s theorem, it will be convenient to
work with cohomology vector spaces rather than homology groups. We will dualize
(smooth) singular homology to obtain (smooth) singular cohomology. We remark
that by the universal coefficient theorem, these singular cohomology theories are no
richer than their duals in homology.

We begin by defining dual vector spaces Ck(M ;R)
def
= Hom(Ck(M);R), the space

of singular k-cochains with real coefficients, and the homomorphisms dk as the duals
to ∂k, so that the dk are maps Ck(M) → Ck+1(M). These Ck together with dk
form a cochain complex, whose cohomology spaces, the singular cohomology of M ,
we denote Hk

( M ;R).

Categorically, we have applied the contravariant functor Hom(−,R) to the cat-
egory of chain complexes whose morphisms are chain maps. Denoting by A,B
chain complexes, chain maps F : A→ B become cochain maps F ∗ : Hom(B,R) to
Hom(A,R).

By similarly dualizing via Hom(−,R), from chain complexes of smooth singu-
lar simplices we obtain smooth singular cohomology. We denote the k-th smooth
singular cohomology of M by Hk

∞(M).

6.5. de Rham’s Theorem. We have shown that singular and smooth singular
homology agree, so their dual cohomologies are the same. What’s left is to show
that these cohomologies agree with de Rham cohomology on smooth manifolds. For
this, the isomorphism Hn(M) ∼= Hn

∞(M) will be paramount, since it allows us to
work entirely with chains over which we may take integrals.

Definition 6.8. Suppose ω is a k-form defined on M and σ =
∑
aiσi is a smooth

k-chain in M , i.e. σ ∈ C∞k (M). Then we define the integral of ω over σ∫
σ

ω
def
=
∑(

ai

∫
∆k

σ∗i ω

)
.

Theorem 6.9 (Stokes’ Theorem on chains). Suppose M is a smooth manifold over
which a smooth (k − 1)-form ω is defined, and in which σ is a smooth k-chain.
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Then ∫
∂σ

ω =

∫
σ

dω.

Proof. The proof is a straightforward application of linearity and Stokes’ theorem,
with a change of variables. �

Definition 6.10. We denote by Ψ the de Rham homomorphism, defined by

Ψ : Ωk(M) −→ Ck∞(M ;R)

ω 7−→
(
σ 7→

∫
σ

ω

)
The de Rham homomorphism is a cochain map (one can check), i.e. Ψ ◦ d = d ◦Ψ,
so it naturally induces a map Ψ∗ : Hk

dR(M) → Hk
∞(M) defined by [ω] → [Ψω].

This map Ψ∗ commutes with pullbacks in cohomology, as well as the connecting
homomorphism induced by a short exact sequence of complexes. That Ψ∗ is in fact
an isomorphism will be the piéce de résistance of this section.

One can prove that Ψ∗ is an isomorphism directly, as de Rham originally did in
1931. We will not. The proof we give follows [Bredon] and enjoys the categori-
cal/homological foresight we now have of algebraic topology.

We need a lemma regarding statements defined on open subsets of manifolds.

Lemma 6.11. Let M be a smooth n-manifold. Suppose that P (U) is a statement
about open subsets of M , satisfying three properties:

(1) P (U) is true for U diffeomorphic to a convex, open subset of Rn;
(2) P (U), P (V ), P (U ∩ V ) =⇒ P (U ∪ V ); and
(3) {Uα} disjoint and P (Uα) for all α =⇒ P (

⋃
Uα).

Then P (M) is true.

Proof. First, we will prove this for M diffeomorphic to an open subset of Rn. In
this case, we will regard M as an open subset of Rn without loss of generality.

We would like to work over a finite union of convex open subsets. To ensure we
can do this, we need a proper map f : M → [0,∞), i.e. a map for which preimages
of compact sets are compact. We construct one such map like so: covering M with
a coutable collection of open sets with compact closure, take a partition of unity
{φi} subordinate to this cover and let f(x) =

∑
φifi(x).

Now define An = f−1([n, n + 1]). Since f is proper, An is compact. Now
take a covering Un of An that is the finite union of convex open sets contained in
f−1([n− 1

2 , n+ 3
2 ). It follows that the Ueven are pairwise disjoint, as are the Uodd.

Since the Un are finite unions of convex open sets, by (1) and (3) we have that
P (Un) is true for all n. By (3), P (

⋃
even Ui) and P (

⋃
odd Ui) are true. Now,

(
⋃

even Ui) ∩ (
⋃

odd Ui) =
⋃

(U2i ∩ U2i+1), and the latter is a disjoint union of sets
which are finite unions of convex open sets, from which it follows that P ((

⋃
even Ui)∩

(
⋃

odd Ui)) is true. By (2), P (M) is true.
So we have proven that P (U) is true when U is diffeomorphic to an open subset

of Rn. The result in general follows by substituting, in (1) and the proof, the words
‘open subset of Rn’ for ‘convex open subset of Rn.’ �

Theorem 6.12 (de Rham’s Theorem). The homomorphism Ψ∗ : Hk
dR(M) →

Hk(M) is an isomorphism for smooth manifolds M .
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Proof. We will show that the statement P (U) = ‘Ψ∗ : Hk
dR(U)→ Hk

∞(U) is an
isomorphism for all k’ satisfies the properties listed in the previous lemma. This is
sufficient by the smooth equivalence.

(1) If U is contractible, the homotopy axiom asserts U has the cohomology
of a point. Thus, for k > 0, Ψ∗ is a map from 0 to 0 and so is trivially
an isomorphism. For k = 0, Ψ∗ is a linear map from R to R. In this
case, it is an isomorphism unless it is the zero map; and it is not so, since
Ψ∗[1] = [(σ 7→

∫
σ

1)] is not zero in general.
(2) We said earlier that Ψ∗ commutes with pullbacks in cohomology and the

connecting homomorphism.

�
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7. Ĉech Cohomology


