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1 December

1.1 (11/28) Ok, let’s give this a try

I want to read Higher Topos Theory (HTT). That book is > 700 pages, and fairly dense ones, so it’s a bit
of a project. On top of that, HTT isn’t really a self-contained read (and that’s sort of the nature of the
subject). So I’ll be drawing on lots of additional material. The subject seems well worth learning, even
unavoidable at times (e.g., in the areas I am interested in), so this should be a productive little activity.

· · ·

I need to cover some ground before actually opening HTT. First I need to think about simplicial sets. Their
role in higher category theory is ubiquitous. They give us a combinatorial model for the homotopy theory
of spaces, and also a model for∞-categories. (On the list of things to do is make precise sense of those
statements.) Some references are [Rie], [Mat], [Fri08], and kerodon.net.

Definition 1.1. Denote by ∆ the simplex category, defined to have...

• As objects, the ordered set [n] := {0 < 1 < · · · < n} for each n ≥ 0; and

• As maps, the weakly order-preserving set maps.

Definition 1.2. A simplicial set is a contravariant functor ∆→ Set. The category of simplicial sets, denoted
sSet, is the functor category Fun(∆op,Set).

Notation 1.1. Let X : ∆op → Set be a simplicial set. We may write it X•, and denote by Xn the set
X([n]). We call the elements of Xn the n-simplices of X.

Notation 1.2. We may write ⟨f0, . . . , fn⟩ to denote the function [n]→ [m] given by n 7→ fn.

Simplical sets are not just simplices. They carry additional structure, that arising from morphisms in
∆. We can give a simple description of ∆. This in turn gives some intuition for what a simplicial set “is."

Proposition 1.3 (The structure of ∆). For each n ≥ 0 and 0 ≤ i ≤ n, define the

i-th face map di : [n− 1]→ [n] as ⟨0, . . . , î, . . . n⟩, and the

i-th degeneracy map si : [n+ 1]→ [n] as ⟨0, . . . , i, i, . . . , n⟩.

Every morphism in ∆ may be written as a composition of face and degeneracy maps. (Also, the face/degeneracy
maps satisfy various relations, the simplicial identities; in fact ∆ is the category generated by those maps,
subject to these identities.)

Thus a simplicial set X• can be described as a collection of sets Xn (n-cells) together with face and
degeneracy maps which satisfy the “simplicial identities." I should write more about how this notion arises
from topology, in particular the singular complex. That in turn would be a good time to relate all this back
to topology (nerves, geometric realization, ...) which is important.

1.2 (12/1) Why simplicial sets, simplicial complexes

I had stuff written here. But it was incomplete, and the “story" here is an aside I want to write about a bit
more carefully at some point. I’m leaving this day blank for the time being.

1.3 (12/4) Basic structure in sSet

We need to make some terminology regarding / record examples of simplicial sets.

Definition 1.4. The standard n-simplex ∆n is the simplicial set represented by [n], i.e. ∆n := Hom∆(−, [n]).

Definition 1.5. Let X•, Y• be simplicial sets. We say Y• is a simplicial subset of X• if Yn ⊆ Xn and
Xf |Yn

= Y f for every n ≥ 0 and simplicial operator f . In other words, the action of operators on Y is the
restriction of their action on X. In other words, Y• is a subfunctor of X•.
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Proposition 1.6. Let X• be a simplicial set. The Yoneda lemma asserts a bijection HomsSet(∆
n, X•) ∼= Xn.

Under this bijection, each n-cell a ∈ Xn corresponds to a map fa : ∆n → X• satisfying fa(id[n]) = a.

Definition 1.7. Let X• be a simplicial set. By the above, we may identify its n-cells with maps ∆n → X•.
Call a cell a ∈ Xn degenerate if it factors as ∆n → ∆m → X• for some m < n. (See [Lur22, Tag 0011] for
equivalent conditions.)

Proposition 1.8. The standard simplex ∆n has a unique non-degenerate n-simplex, that arising from id[n].
We may call this the generator of ∆n.

Definition 1.9 (Boundary of ∆n). Define a simplicial subset ∂∆n, the boundary of ∆n, by

(∂∆n)k := {non-surjective maps [k]→ [n]} ⊆ Hom∆op([k], [n]).

Proposition 1.10. The boundary of ∆n is the maximal proper simplicial subset of ∆n.

Definition 1.11 (Horns in ∆n). For 0 ≤ i ≤ n, define a simplicial subset Λn
i , the i-th horn in ∆n, by

(Λn
i )k := {f ∈ Hom∆op([k], [n])) : f([k]) ∪ {i} ≠ [n]}.

In other words, its cells are those maps “missing something besides i." A horn Λn
i is called outer if i ̸= 0, n

and inner otherwise.

Any simplicial operator f : [m] → [n] factors through its image, i.e. we can uniquely write f =
f injfsurj , a surjection followed by an injection. Furthermore, this is unique. We get the following.

Proposition 1.12. Let σ : ∆n → X• be an n-cell of X•. Then σ factors uniquely as

∆n α−→ ∆m τ−→ X•,

Where α represents a surjection [n]→ [m] and τ is not degenerate. Call m the dimension of the cell σ. (My
notation, maybe poor, not that important.)

So, degenerate n-simplices are just non-degenerate simplices in a lower dimension (their “dimension"),
trying to bite off more than they can chew.

Definition 1.13 (Skeleta). Let X• be a simplicial set. For k ≥ −1, define a simplicial subset skk(X•), the
k-skeleton of X•, by

(skk(X•))n := {n-simplices of X• with dimension at most k }.

Remark 1.14. The face maps di : [n− 1]→ [n] induce maps di : ∆n−1 → ∆n via post-composition. Now,
consider an n-cell a ∈ Xn and its representation a : ∆n → X•. We have that di(a) ∈ Xn−1 is represented
by adi.

1.4 (12/6) Colimits in/functors out of sSet

Today I want to understand part of Akhil’s notes, about functors out of sSet. This is closely related to
understanding colimits in sSet, by general theory for presheaf categories. So we also want to understand
colimits in sSet. (And we should want to understand these regardless.) Let’s go over this.

Here’s a standard structure result for presheaf categories.

Proposition 1.15. If a category C is small, then every presheaf on C is canonically the colimit of representable
presheaves. In particular, every simplicial set is canonically the colimit of standard simplices.

Proof. This is written out in Akhil’s notes. I’ll give the idea. Also see [Lur22, Remark 00X5].
Consider a presheaf F : Cop → Set. We associate to F the category DF with

• Objects: morphisms from represented presheaves to F , i.e. arrows [−, X]→ F ; and

• Morphisms: morphisms between represented presheaves such that the obvious triangle com-
mutes.
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There is a functor ϕF : DF → PShv(C) which sends objects [−, X] → F to [−, X]. By construction, for
each object c ∈ DF , there is a morphism ϕF (c) → F , and the diagram described by ϕF together with
these morphisms commutes. We therefore have a distinguished morphism

lim
DF

ϕF → F.

This map turns out to be an isomorphism.

Hereafter, denote by C the category of presheaves on C.
Suppose D is cocomplete. We want to understand functors F : C→ D. The previous proposition says

that objects in C are colimits of representables. So, if F preserves colimits, then F is determined by F |C,
i.e. what it does to C (embedded via Yoneda). We’ve described an injection of sets

Fun′(C,D) ↪→ Fun(C,D). (I.16)

Here, Fun′ denotes the set of colimit-preserving functors.
Conversely, suppose given a functor F : C → D. Does it extend along the Yoneda embedding to a

functor F : F→ D? We can do something here, let me write it out:

(1) As above, for each presheaf G : Cop → Set, consider it as a colimit of ϕG : DG → C. (We can do
this because it lands in represented functors.)

(2) This is ‘functorial’ in the following sense: a morphism G→ H induces a functor DG → DH such
that the obvious triangle commutes.

(3) Define a functor F : C→ D by

F (G) := colim−→DG
F ◦ ϕG.

This is a functor because of (2).

This functor F really extends F , i.e. the obvious diagram commutes. For suppose G = [−, c]; then DG has
a final object [−, c]→ [−, c], therefore F (G) = colim−→DG

F ◦ ϕG = F (G).

Proposition 1.17. Suppose given a functor F : C→ D to a cocomplete category. Then the associated functor
F : C→ D constructed above preserves all colimits. In fact, F is a left adjoint. The right adjoint to F is the
functor defined by

D ∋ d 7→ (c 7→ HomD(Fc, d)) ∈ C.

Proposition 1.18. Suppose given a functor F : C→ D to a cocomplete category. Then the mapping F 7→ F
describes a bijection of sets

Fun(C,D) ∼−→ LeftAdjoints(C,D).

The proofs are short and formal.

Corollary 1.19. If a functor F : C
op → Set takes colimits to limits, then it is representable.

Proof. Suppose as given F . By the above, it is left adjoint to some G : Setop → C. Define f := G({pt}),
the image of the terminal object in Setop. I claim that f represents F . (Insert short, formal proof; it’s in
Akhil’s notes.)

1.5 (12/23) The singular complex and geometric realization

Finals are over and I’ve had some time to wind down at home. Last time I worked through part of Akhil’s
notes about functors out of sSet. (Emily Riehl talks about something similar in her notes, but I have not
gotten through those, so let me say nothing about that right now.)

Next I want to relate Top, Cat, and sSet. This is the backdrop for the idea that higher categories
“bridge" topology/homotopy theory and ordinary categories. Today I’ll go over the relation of sSet to Top,
by which I mean the adjunction

the geometric realization functor ⊣ the total singular complex functor.
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There are a few ways to introduce this adjunction. Lurie, Charles, and Akhil each do it differently. As a
matter of taste, I prefer Akhil’s approach. (Possibly related: [Lur22, Tag 002D].) Lurie’s approach has
some important ideas behind it too, I think, but that is overruled because I am feeling sleepy today.

Definition 1.20. Define a functor | − | : ∆→ Top as follows.

• Each object [n] is sent to the topological n-simplex ∆n
top ⊆ Rn+1, defined as those (t0, . . . , tn)

satisfying ti ≥ 0 and
∑

ti = 1 and given the subspace topology.

• Each morphism f : [m]→ [n] is sent to the map

(t0, . . . , tn) 7→ (uj), uj =
∑

i:f(i)=j

ti.

Definition 1.21 (Geometric realization). Since Top is cocomplete, according to Proposition 1.17 and 1.18
the functor of Definition 1.20 extends uniquely to a left adjoint | − | : sSet→ Top. We call this geometric
realization.

In fact, as in Proposition 1.18, we know the right adjoint to geometric realization. It sends a space X to
the simplicial set [n] 7→ HomTop( |[n]| = ∆n

top, X). This is an important construction I maybe should have
defined earlier.

Definition 1.22 (Singular complex). Let X be a space. Denote by Sing(X)• the simplicial set given as
follows.

• The n-cells are the continuous maps ∆n
top → X, and

• Each simplicial operator f : [m]→ [n] acts by precomposing with the continuous map

∆m
top → ∆n

top, (tj) 7→ (uj =
∑

f(i)=j

ti).

We call Sing(X)• the singular complex of X. We define a functor Sing(−)• : Top → sSet in the obvious
way.

Proposition 1.23. Prior discussion tells us that geometric realization | − | : sSet→ Top is left adjoint to the
singular complex functor.

Proposition 1.24. Since geometric realization is a left adjoint, it commutes with colimits. Furthermore,
geometric realization commutes with finite limits of compactly generated spaces.

We will see later that this adjunction is homtopically well-behaved.
I next want to describe geometric realization. We already have the general construction laid out for

us by Proposition 1.17 and the preceding discussion. Given X•, we will form the category of simplices, also
called its category of elements, whose elements are the morphisms ∆n → X• (i.e., the cells of X•), and we
take the colimit of | − | restricted to this subcategory. (This is not circular since we are really applying the
“baby" geometric realization to the simplex category, Yoneda embedded.)

Definition 1.25. Given X• ∈ sSet, its category of simplices or category of elements has as objects all
morphisms ∆n → X• for every n, and morphisms the maps ∆m → ∆n making the obvious diagram
commute. We write this category el(X).

This category of elements/simplices el(X) is precisely the category DX described on (12/6) with
C = ∆. (Lurie writes this ∆X .) Also as noted there, there is a natural functor ϕX : el(X) → sSet.
Geometric realization is by definition the colimit

|X| ∼= colim−→el(X)
| − | ◦ ϕX .

Here, we are thinking of the “baby" geometric realization defined only on ∆.

Remark 1.26. General machinery gave us geometric realization. I think there are a few things worth
saying about this, but I don’t totally know what. I’ll leave this remark here as a “to-do." Some possibly
related keywords and references: “Grothendieck construction," “Kan extension," nLab, [Rie, §4], and
Subsection 01Q7.

7

https://kerodon.net/tag/002D
https://ncatlab.org/nlab/show/nerve+and+realization
https://kerodon.net/tag/01Q7


Chapter II

2023

1 January

1.1 (1/23) Plans have changed, nerves of categories

I’ve gone radio silent for a month. One big reason why is that I am busy this semester. Another is that
some mutuals want to organize a reading group/seminar similar, but not identical to, what I’ve been
trying to do here, and I may join them. Maybe the biggest difference is that they want to focus on Charles’
quasicategory notes (under Charles’ supervision).

This will probably mean repeating myself a bit while I change tracks to Charles’ notes.
In any case, I want to talk about the nerve of a category. This is part of the basic "Spaces, categories,

and simplicial sets" picture. In particular, the nerve of a category is a simplicial set encoding that category.

Definition 1.1. Let C be a category. Define a simplicial set NC, the nerve of C to have as cells (NC)n :=
HomCat([n], C) and so that operators f : [m]→ [n] act by precomposition. This defines the nerve functor
N : Cat→ sSet.

Here’s a feel for the structure of a nerve. The n-cells of NC may be canonically identified with the set
of length n tuples of composable arrows in C. The 0-cells in particular may be identified with objects of
C. An operator f : [m]→ [n], or in Charles’ notation ⟨f1, . . . , fm⟩, acts by taking n-strings of composable
arrows and “collapsing edges" by composing the arrows, those collapsed edges being determined by the fi.
(At least that’s how I try to think about it. I think that’s correct. UPDATE: Yes this is correct, see Charles’
notes, Proposition 4.4.) For instance, ⟨0, 2⟩∗ takes a pair of composable arrows (f, g) ∈ (NC)2 and sends
them to their composite gf ∈ (NC)1. See also Charles notes, p. 13.

Now we ask a nascent question: can we characterize nerves of categories?

Proposition 1.2. Let X be a simplicial set. For n ≥ 2, consider the function

ϕn : Xn → {(gi) ∈ (X1)
n : gj⟨1⟩ = gj+1⟨0⟩ for all i}

(The latter set being the collection of “n-paths" of 1-cells in X) Which acts by a 7→ (a⟨0, 1⟩, . . . , a⟨n− 1, n⟩).
These ϕn are bijections for all n ≥ 2 if and only if X is the nerve of a category.

Maybe a lazy way to digest this is that “a simplicial set is the nerve of a category iff, thinking of n-cells as
length n strings of arrows, their 1-dimensional structure exactly reflects the structure that should arise
from the existence and uniqueness of composites."

Proposition 1.3. The nerve functor N : Cat→ sSet is fully-faithful. That is, morphisms of nerves NC → ND
correspond exactly to functors C → D.

1.2 (1/26) Spines

We characterized nerves as those simplicial sets whose n-cells were exactly determined by the collection of
length n strings of “composable" 1-cells, in the obvious way. This captures the existence and uniqueness of
composites for morphisms in a category. We can go about this characterization a bit more systematically.
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Definition 1.4. Let n ≥ 0. The spine of the standard n-simplex ∆n is the simplicial subset defined by

(Spinen)k := {⟨f0, . . . , fk⟩ : [k]→ [n] : fk ≤ f0 + 1} ⊆ ∆n
k .

Informally, the spine is the set of vertices of ∆n together with the arrows between adjacent vertices
(considered with their total ordering).

Proposition 1.5. Let X be a simplicial set. For every n ≥ 0, the map

Hom(Spinen, X)→ {(ai) ∈ (X1)
n : ai⟨1⟩ = ai+1⟨0⟩} (II.6)

Given by f 7→ (f⟨0, 1⟩, . . . , f⟨n− 1, n⟩) is a bijection.

Pictorially, I think this is obvious. Here’s a clean proof.

Proof. One point we need: we previously talked about colimits in sSet. Or at least I intended to. Here’s
the main fact: a colimit of simplicial sets Xα exists and has as its n-cells the colimit of the n-cells of the Xα.
This is true for presheaves in general; we say their (co)limits are “computed objectwise."

Another point we need: here’s a definition. Suppose S is a totally ordered set. We denote by ∆S the
simplicial set having (∆S)n := {order-preserving maps [n]→ S}. If S is finite and nonempty, there is a
unique isomorphism ∆|S|−1 ∼= ∆S . In the case that S ⊆ [n], this is a good way to notate subcomplexes of
∆n.

Here’s a fact I won’t prove: given a subcomplex K ⊆ ∆n, writing A for the poset of S ⊆ [n] such that
∆S ⊆ K, the canonical map colim−→S∈A

∆S → K is an isomorphism.
Finally, our proposition: in the case that K = Spinen, the poset A consists of sets of the form {j} and

{j + 1}, and we have that colim−→S∈A
∆S ∼= Spinen. Now:

Hom(Spinen, X) ∼= Hom(colim−→S∈A
∆S , X) ∼= lim

A
Hom(∆S , X).

See that the latter set is precisely the RHS of (II.6).

Maybe the key observation is that ∆n is “generated" precisely by the arrows of Spinen. (Make this
formal? Say this better? Well, this is how I think about it.)

Proposition 1.7. A simplicial set X is the nerve of some category if and only if for each n ≥ 2, every
morphism f : Spinen → X extends uniquely along the inclusion Spinen ↪→ ∆n.

Proof. The unique extension condition is equivalent to bijectivity of the restriction Hom(∆n, X) →
Hom(Spinen, X). By Proposition 1.5, the latter set is isomorphic to

{(ai) ∈ (X1)
n : ai⟨1⟩ = ai+1⟨0⟩}.

Then the desired result is immediate considering Proposition 2.34.

1.3 (1/30) Inner Horns

Recall that for each n and 0 ≤ i ≤ n we defined the i-th horn Λn
k ⊆ ∆n to have as k-cells those cells

f : [k]→ [n] of ∆n which “miss something other than i," i.e. those satisfying f([n]) ∪ {i} ≠ [n]. If j ̸= 0, n
then we called Λn

j an inner horn.
Drawing some pictures of horns and thinking of 1-cells as arrows, we think of inner horns as those

collections of arrows that “should be composable." Similar to how we handled spines, we may think to
characterize nerves as those simplicial sets whose inner horns have unique extensions. By our analogy
comparing inner horns to composable arrows, this unique extension condition is analogous the existence
and unqiueness of composites.

Theorem 1.8. A simplicial set X is the nerve of some category if and only if for every n ≥ 2 and inner horn
Λn
j , every morphism Λn

j → X extends uniquely along Λn
j ↪→ ∆n.

Proof. Charles gives a full proof on p. 21 of his notes. The “only if" direction is not complicated. For the
“if" direction:

9



• We can construct a category C whose nerve realizes X explicitly. The objects and morphisms
are specified by X0 and X1.

• Existence and uniqueness of fillers are necessary for the existence and uniqueness of composites.

• Existence of a filler for Λ3
1 or Λ3

2 is necessary for the associative law to hold.

• Then one exhibits an isomorphism X → NC.

10



2 February

2.1 (2/4) Quasicategories

A quasicategory or∞-category is a simplicial set X such that every inner horn Λn
j → X has a filler (i.e. an

extension along Λn
j ↪→ ∆n.) We have shown that ordinary categories are precisely those quasicategories

with unique horn extensions.

Definition 2.1. Some terminology. Let X,Y be quasicategories.

• Objects of X := X0.

• Morphisms of X := X1.

• Identity morphism of x ∈ X0 := x⟨0, 0⟩.

• Products of quasicategories are just their products as simplicial sets.

• Coroducts of quasicategories are just their products as simplicial sets.

• A morphism of quasicategories X → Y is a map of simplicial sets.

• A Natural transformation f0=⇒f1 of functors f0, f1 : X → Y is a map of simplicial sets
ϕ : X ×∆1 → Y such that ϕ|X×{i} = fi.

It’s a fact to be proven that the (co)product of quasicategories is again a quasicategory. Here’s more
terminology.

Definition 2.2. Let X be a simplicial set. Let ∼ denote the equivalence relation on the set
∐

Xn of cells
of X generated by the relation which identifies a cell a with any other cell of the form af for some
simplicial operator f . A connected component of X is an equivalence class of ∼. We write π0X for the set
of equivalence classes. A simplicial set is called connected if π0X is a singleton.

Proposition 2.3. Let X be a simplicial set and suppose x, y are cells in the same connected component of
X, i.e. x = yf for some f : [m]→ [n]. If F : X → Y is a map of simplicial sets, then F (yf) = F (y)Y (Xf).
The latter is F (x) by hypothesis, thus F (x) ∼ F (y). So morphisms F : X → Y induce maps π0X → π0Y on
connected components.

Proposition 2.4. The induced map π0(X × Y )→ π0(X)× π0(Y ) is a bijection.

2.2 (2/6) Sub, opposite quasicategories

Definition 2.5. Let C be a quasicategory. A subcomplex C ′ ⊆ C is called a subcategory of C if for all
n ≥ 2 and 0 < k < n, every f : Λn

k → C such that f(Λn
k ) ⊆ C ′ extends “into C ′," i.e. extends to a map

f : ∆n → C ′.

It is clear that subcategories of quasicategories are quasicategories.

Definition 2.6. Let C be a simplicial set. A simplicial subset C ′ ⊆ C is called full if

• For every cell σ : ∆n → C such that for every 0 ≤ i ≤ n the vertex σ(i) ∈ C belongs in C ′, the
cell σ belongs in C ′.

If C is a quasicategory and C ′ is a full subcomplex, then it is a quasicategory. In this case we say C ′ is a
full subcategory.

Next we can define the opposite of a quasicategory. In ordinary categories, we do this by reversing
composition. We can do something similar once we identify an involution on the simplex category ∆.

Definition 2.7. Define an involution functor op : ∆→∆ as follows.

• It acts as the identity on objects.

• It sends the morphism ⟨f0, . . . , fm⟩ : [m]→ [n] to its “reverse" ⟨n− fm, . . . , n− f0⟩ : [m]→ [n].

Definition 2.8. Let X : ∆op → Set be a simplicial set. We define the opposite simplicial set as Xop := X◦op.

One sees that (∆n
j )

op ∼= ∆n
n−j and that (NC)op = N(Cop). The former fact ensures that opposites of

quasicategories are quasicategories. The latter ensures that this notion of opposites restricts to the usual
1-categorical notion.
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2.3 (2/7) Examples of∞-categories

Example 2.1. The nerve NC of a category C is a quasicategory. This is immediate by our characterization
of nerves (Theorem 1.8).

Example 2.2. The singular complex Sing(X) of a space X is a quasicategory. In fact, we can say a little
bit more. Denote by (Λn

j )top the topological horn, defined as you might expect:

(Λn
j )top := {t ∈ ∆n : ti = 0 for some i ∈ [n]/{j}}.

It is clear that for any j, the simplex ∆n
top retracts onto (Λn

j )top. Thus by precomposing with the retract we
get, for every j, an inverse to the restriction

Hom(∆n,SingX)→ Hom(Λn
j ,SingX).

In other words, we can fill every Λn
j → SingX via the retract. This shows that Sing(X) is a quasicategory.

In fact, we’ve shown all horns fill, not just inner horns. We call such simplicial sets Kan complexes.

Example 2.3. Let A be an abelian group and d ≥ 0 an integer. In spaces, the Eilenberg-Maclane spaces
K(A, d) represent Hd(−;A). We will define an analogous simplicial set K = K(A, d), the Eilenberg-
Maclane objects in sSet, like so.

• An element of Kn is a collection (aδ ∈ A)δ, where the index δ occurs over all operators
δ : [d]→ [n], so that

– If δ is not injective, aδ = 0; and

– For each operator γ : [d+ 1]→ [n] we have
∑d+1

j=0(−1)jaδdj = 0.

• For each operator f : [m]→ [n] and a ∈ Kn, we define (af)δ := afδ.

These K(A, d)’s are ∞-categories. In fact, they are simplicial abelian groups, which are always Kan
complexes. In sSet, they represent normalized d-cocycles with values in A. (See Charles’ notes, p. 29.)

Example 2.4. There is a simplicial set of ordinary categories, denoted Cat1. We define it like so.

• Each n-cell (Cat1)n is the data of (Ci, Fij , ζijk) where

– For each i ∈ [n], Ci is a category,

– For each i ≤ j in [n], Fij : Ci → Cj is a functor, and

– For each i ≤ j ≤ k in [n], ζijk : Fik → FjkFij is a natural isomorphism,

– And furthermore, these data are subject to certain basic properties (e.g. Fii = idCi).

• Each operator f : [m]→ [n] acts on an n-cell (Ci, Fij , ζijk) by composing with the indices.

The simplicial set Cat1 is an∞-category . Let’s discuss fillers.

• A 2-horn Λ2
1 → Cat1 is the data of functors C0

F01−−→ C1
F12−−→ C2. An extension is the data of

a functor F02 : C0 → C2 and a natural isomorphism ζ012 : F12F01=⇒F02. An obvious but not
necessarily unique candidate is F02 := F12F01.

• The data of a 3-horn Λ3
1 → Cat1 is a bit of a picture. A filler amounts to finding a natural

isomorphism to fill the following diagram.

F03 F13F01

F23F02 F23F12F01

ζ013

ζ123F01

F23ζ012

We can always find this and it is unique, since we required the ζ ’s to be natural isomorphisms.
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2.4 (2/8) The fundamental category of a simplicial set

The fundamental groupoid π≤1X of a space X can be recovered from its singular complex Sing(X). We
will recast this construction π≤1X for any∞-category. The result will no longer be a groupoid in general
(it will only be so for Kan complexes, I think). Let’s see how far we get.

First we will look at a certain construction for all simplicial sets. By its definition, it’s essentially a left
adjoint to the nerve functor.

Definition 2.9. Let X be a simplicial set. A fundamental category of X is a category hX and a map
α : X → N(hX) such that for every nerve NC, the restriction

α∗ : Hom(N(hX), NC)→ Hom(X,NC)

Is a bijection. This characterizes hX up to unique isomorphism, if it exists. (It always does.)

Proposition 2.10. Every simplicial set has a fundamental category.

Proof. Charles sketches this on p. 30. The objects of our category are X0. The morphisms are (those
generated by) the edges X1, where we identify composites according to the 2-cells of X. So we turn X
into a category in the most obvious way, flattening the higher-categorical structure in the process. The
map α : X → N(hX) is the one you’d expect.

Proposition 2.11. The fundamental category describes a functor h : sSet → Cat, and this functor is left
adjoint to the nerve functor N .

2.5 (2/9) Homotopy for∞-categories

Now we start down a long, dark path. Neither of these adjectives matter up-to-homotopy, however.

Definition 2.12. Let C denote an∞-category and let f, g : x→ y be two morphisms between objects x, y
in C. A homotopy from f to g is a 2-cell a ∈ C2 such that a01 = f , a12 = idy, and a02 = g.

Proposition 2.13. The homotopy relation is is an equivalence relation on HomC(x, y), i.e. the set of edges
i with i0 = x and i1 = y. Thus we may unamibguously say maps are (or are not) homotopic and speak of
homotopy classes.

Remark 2.14. The existence of inner horn extensions is necessary for this relation to be symmetric and
transitive. So quasicategories stand out amongst simplicial sets as those having a good notion of homotopy.

Proposition 2.15. Maps f, g are homotopic in C if and only if they are homotopic in Cop.

It’s maybe a little weird that “f homotopic to g" is a slightly asymmetric definition, in that even if f
is homotopic to g, the data of a homotopy does not suffice to get a homotopy from f to g in Cop. I don’t
think this matters much, in light of the previous proposition. Lurie also gives an alternate, symmetric
notion of homotopy to address this point [Lur22, Tag 00V0].

Suppose as given f ∈ HomC(x, y) and g ∈ HomC(y, z). We say an edge h ∈ HomC(x, z) is a composite
of (g, f) if there exists a 2-cell a such that (what you expect).

Proposition 2.16. Composition respects the homotopy relation on morphisms. Thus, composites are unique
up to homotopy.

Definition 2.17. Let C be an∞-category . Its homotopy category hC is the category having as objects C0

and as morphisms the homotopy classes of morphisms of C.

Now we have defined the fundamental category of a simplicial set and the homotopy category of an
∞-category . The fundamental category is supposed to be the homotopy category to some extent, so we
should compare these two notions where they are both defined (∞-categories ).

Definition 2.18. Let C be an ∞-category . There is a natural map π : C → N(hC) that “passes to
homotopy." It acts like so.

• An object is sent to itself (note C0 = (hC)0 = N(hC)0).

• A morphism f is sent to its homotopy class.
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• An n-cell a ∈ Cn is sent to the unique π(a) ∈ N(hC)n that satisfies π(a)i−1,i = π(ai−1,i) for all
i. (See also [Lur22, Construction 004G].)

This map π : C → N(hC) is compatible with simplicial operators, in the sense that given a cell a ∈ Cn,
one has [a01] ◦ · · · ◦ [an−1,n] = [a0n].

Proposition 2.19. If C is an ordinary category, then f ≃ g iff f = g. Thus if an∞-category C is isomorphic
to a nerve of a 1-category, then π : C → N(hC) is an isomorphism, so it must be isomorphic to the nerve of
its homotopy category.

Proposition 2.20 (Universal property of homotopy category). Let C be an ∞-category and D a small
category. If f = C → ND is a map of simplicial sets, then there exists a unique map g : N(hC)→ ND such
that f = g ◦ π.

Proof. We will construct g. We will do so by constructing a functor g : hC → D. On objects c ∈ ob(hC) =
C0, we define g(c) := f(c) ∈ (ND)0 = ob(D). On morphisms, we define g([h]) := f(h). This is well-
defined, for if h ≃ h′ exhibited by some a ∈ C2, then ϕ(a) ∈ (ND)2 exhibits the identity f(h′) = id◦h.

Corollary 2.21. The homotopy category construction is left adjoint to the nerve functor:

h : qCat Cat : N

(Easy to-do: homotopy category of products.)

2.6 (2/12) About composition in∞-categories

Let C be an ∞-category . Let x, y, z ∈ C0 be objects and let f ∈ HomC(x, y) and g ∈ HomC(y, z) be
morphisms (i.e. 1-cells starting/ending at their domains/targets.) Last time we defined a composite of
morphisms f, g in C to be any h ∈ HomC(x, z) such that there exists a 2-cell a ∈ C2 such that a01 = f ,
a12 = g, and a02 = h. Composites exist and are unique up-to-homotopy (thus we can compose homotopy
classes), but are not uniquely determined in general. We may ask whether every representative of a
homotopy class of a composite can be realized on-the-nose as the extension of its (compositees?) The
answer is yes.

Proposition 2.22. If f : x → y, g : y → z, and h : x → z are morphisms in an ∞-category C, then
h ∈ [g] ◦ [f ] if and only if h is a composite of f with g, i.e. there exists u ∈ C2 satisfying

u|∆0,1 = f, u|∆1,2 = g, u|∆0,2 = h.

The proof is nice. I’d reproduce it here but I don’t feel like making that diagram right now.

2.7 (2/13) Isomorphisms and inverses in∞-categories

Denote by C an∞-category and f : x→ y a morphism in C. We say f is an isomorphism or an equivalence
if [f ] is an isomorphism in hC. Unwinding a bit, this is equivalent to the existence of a g : y → x such
that [f ] ◦ [g] = [1y] and [g] ◦ [f ] = [1x]. The property of being an isomorphism is related to inverses; the
following is elementary.

Proposition 2.23. Let f : x → y be a morphism in an ∞-category C. A morphism g : y → x is called a
preinverse to f if [f ] ◦ [g] = [idy], and a postinverse if [g] ◦ [f ] = [idx]. If g is both, we call it an inverse. TFAE.

1. f is an isomorphism.

2. f has an inverse.

3. f has a preinverse and a postinverse.

4. f has a preinverse with a preinverse.

5. f has a postinverse with a postinverse.

As for composites, inverses are not generally unique, but are so up-to-homotopy.
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Proposition 2.24. If F : C → D is a map of quasicategories, then F sends isomorphisms to isomorphisms.

Proof. Suppose that f : x→ y is an isomorphism in C. By Proposition 2.23, f admits an inverse g : y → x.
By definition, it satisfies [f ] ◦ [g] = [idy], so by Proposition 2.22 there exists u ∈ C2 witnessing idy = f ◦ g.
By this, I mean the obvious identities with simplicial operators hold. Morphisms of simplicial sets commute
with operators, hence F (u) witnesses idF (y) = F (f) ◦ F (g). This shows that F (g) is a preinverse to F (f).
By an identical argument, one sees that F (g) is a postinverse. So F (g) is an inverse and we are done.

2.8 (2/13)∞-groupoids, cores, and Kan complexes

Here are some definitions.

• An ∞-category C is called a quasigroupid or ∞-groupoid if hC is a groupoid, i.e. if every
morphism is an isomorphism.

• For an ordinary category C, its core Ccore is the subcategory with the same objects and only the
isomorphisms of C.

• For an ∞-category C, its core Ccore is the simplicial subset consisting of all cells of C whose
edges are all isomorphisms.

• Recall that a simplicial set is called a Kan complex if all horns (not necessarily inner) have
extensions.

Note that N(Ccore) = (NC)core, so our terminology is justified. Now here are some facts.

Proposition 2.25. If C is an∞-category , then π0C
core = {objects of C}/ ∼=.

Proposition 2.26. If C is an∞-category , then Ccore is a subcategory and an∞-groupoid . Furthermore,
every sub-∞-groupoid is contained in Ccore. In other words, Ccore is the maximal subcategory which is also
an∞-groupoid .

Proposition 2.27. Every Kan complex is an∞-groupoid .

Proof. Suppose that K is a Kan complex and f : x→ y is a morphism in K. Consider the horn u : Λ2
0 → K

with u01 = f and u02 = idx. Extending this horn gives us g := u12 with [g] ◦ [f ] = [idx]. Thus, every
morphism admits a preinverse, and this turns out to be sufficient for an∞-category to be an∞-groupoid
.

Proposition 2.28 (Joyal’s theorem; harder). Every∞-groupoid is a Kan complex.

Definition 2.29. Since SingX is a Kan complex, the proposition allows us to define the fundamental
∞-groupoid of a space X as SingX.

2.9 (2/15) The functor quasicategory

The nerve functor N : Cat→ sSet is fully faithful, so functors of categories correspond to morphisms of
their nerves. Maybe this suggests that if we want a “mapping space," or really a “mapping∞-category ,"
it’s 0- and 1-categorical structure should consist of morphisms X → Y of simplicial sets and natural trans-
formations between them. Morphisms are the same thing as maps X ×∆0 → Y . A natural transformation
is a suitable map X ×∆1 → Y . This suggests the following.

Definition 2.30. Let X,Y be simplicial sets. Their function complex is the simplicial set Fun(X,Y ) with

(Fun(X,Y ))n := HomsSet(∆
n ×X,Y ).

Proposition 2.31. There is a natural bijection

Hom(X × Y, Z) ∼−→ Hom(X,Fun(Y,Z)).

Proposition 2.32. For ordinary C and D, one has N(Fun(C,D)) ∼= Fun(NC,ND).

Eventually we will see that function complexes to an∞-category are∞-categories . This is what we
want. We can’t prove this yet.
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2.10 (2/16) Lifting properties time — weakly saturated classes

My assessment to become a personal fitness trainer is approaching, so I’m shifting focus to that for a little
while. I’ll probably be leaving more to-do’s than I should be.

Quasicategories are defined in terms of lifting properties. Now we will take some time to generally
study lifting properties, which will be useful for studying quasicategories.

Definition 2.33. Let C be a category admitting small colimits. A class of morphisms A is called a weakly
saturated class if it

1. Contains all isomorphisms,

2. Is closed under cobase change (also called pushouts), composition, transfinite composition,
coproducts, and retracts. (See Charles p. 38 for the definitions.)

Given any class of morphisms S, its weak saturation S̄ is the smallest weakly saturated class containing S.

Example 2.5. Take C = Set. The weak saturation of {{0, 1} → {1}} is the class of surjective maps. The
weak saturation of {∅→ {1}} is the class of injective maps.

Example 2.6. Take C = Set. The surjections/injections also arise as weak saturations. Of what?

Proposition 2.34. Let S be a category with small colimits and let C be a class of objects. Let A be the class of
maps with the following lifting property: if i : A→ B is in A, then for every f : A→ C to an object of C, we
can fill the following diagram:

A C

B

f

i

Then A is a weakly saturated class. (Example: S = sSet, C = {∞-categories }.

Proof. To-do. (Worked out in meeting.)

2.11 (2/16) Classes of horns, anodyne morphisms

As indicated, we are interested in ∞-categories , so we ought to study lifting properties of horns in
particular. We make some definitions for this.

Definition 2.35. We define the following sets of horns.

InnHorn :={Λn
k ↪→ ∆n : 0 < k < n, n ≥ 2},

Horn :={Λn
k ↪→ ∆n : 0 ≤ k ≤ n, n ≥ 1},

RHorn :={Λn
k ↪→ ∆n : 0 < k ≤ n, n ≥ 1},

LHorn :={Λn
k ↪→ ∆n : 0 ≤ k < n, n ≥ 1}.

We call their weak saturations in sSet the (inner, right, left) anodyne morphisms.

Proposition 2.36. Monomorphisms of simplicial sets form a weakly saturated class. Therefore, since Horn
consists of monomorphisms, its weak saturation must too. So (inner, right, left) anodyne maps are always
monomorphisms.

Proposition 2.37. Let C be an∞-category . If A ↪→ B is an inner anodyne inclusion, then every f : A→ C
extends to B.

Proof. Let A denote the set of maps of simplicial sets X → Y which extend along every map X → C.
(C is fixed here.) Since C is a quasicategory, we have InnHorn ⊆ A. By Proposition 2.34, the class A is
weakly saturated, so InnHorn ⊆ A. That is what we wanted to show.

Proposition 2.38. (To-do: Prop 16.10.)

Example 2.7. Here are some examples of inner anodyne morphisms. (Important to-do: finish.)
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• The inclusions of spines In ↪→ ∆n are inner anodyne for every n. In particular, if C is an
∞-category , every map In → C extends to a ∆n → C.

•
...

2.12 (2/16) Lifting calculus

Here’s a definition I expected a bit earlier in Charles’ notes.

Definition 2.39. Say an object X satisfies the extension property for f : A→ B if for every u : A→ X we
can find an extension B → X.

Definition 2.40. Suppose as given maps f : A→ B and g : X → Y . A lifting problem for (f, g) is a pair of
maps u : A→ X and v : B → Y making a commutative square. A lift for the lifting problem is a fill s to
the obvious diagram:

A X

B Y

u

f g

v

s

Definition 2.41. Let f, g be morphisms in a category. We write f � g if every lifting problem for (f, g)
admits a lift. We call this the lifting relation on morphisms. If f � g, we say:

• f has the left lifting property rel. to g, or

• g has the right lifting property rel. to f , or

• f lifts against g.

Definition 2.42. Let A be a class of morphisms. We define the right complement A� := {g : a�g,∀a ∈ A}.
We define the left complement �A similarly.

Proposition 2.43. Let A be any class of morphisms in a category with small colimits. The left complement
�A is weakly saturated, and the right complement A� is weakly cosaturated.

Proof. (To-do: prove. Also, Charles’ related exercises.)

Example 2.8. Let C be an abelian category, let P = {0 → P : P projective}, and let B be the class of
epimorphisms in C. By the definition of projective objects, we have P � B. Thus B ⊆ P�.

(To-do: show converse?)

2.13 (2/17) Inner fibrations

A map p of simplicial sets is called an inner fibration if InnHorn � p. Thus, InnFib = InnHorn�.

Proposition 2.44. A simplicial set C is an∞-category iff C → ∗ is an inner fibration.

Proposition 2.45. InnFib is defined as a right complement, thus InnFib is weakly cosaturated. This implies,
for instance, that if C is an∞-category and D → C is an inner fibration, then D is an∞-category .

Proposition 2.46 (. kerodon] If X is a simplicial set, then a morphism X → ND is an inner fibration iff X
is an∞-category .

Proof. (To-do.)
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2.14 (2/20) Factorizations

Recall that we defined inner fibrations InnFib as the right complement of InnHorn. This tells us something—
maybe this is why we call it a “complement."

Proposition 2.47 (Small object argument). Let S be a set of morphisms in sSet. Then every map f of
simplicial sets admits a factorization f = p ◦ j with p ∈ S� and j ∈ S.

Corollary 2.48. If S is any set of morphisms in sSet, then S =� (S�).

Proof. Since �(S�) is a left complement, it is weakly saturated (Proposition 2.43), thus S ⊆� (S�).
Now suppose that f � S�. By the previous proposition, we may write f = pj for p ∈ S� and j ∈ S,

and by assumption f admits a lift in the following diagram.

• •

• •

f

id

j

p
s

Thus, we get the following commutative diagram.

• • •

• • •

f

s

id

j

id

p

f

This exhibits f as a retract of j. Since j ∈ S and weak saturations are closed under retracts, we have
f ∈ S.

Corollary 2.49. Every map f of simplicial sets can be factored f = pj with p an inner fibration and j inner
anodyne.

2.15 (2/21) Factorization systems and unique lifts

Last time, we proved that for a class S of maps in sSet, we have S =� (S�) and we can factor every
map as a composite of one map from S and S�. Starting with S = InnHorn, we got a factorization of an
arbitrary map as an inner anodyne followed by an inner fibration. We study such systems in general.

Definition 2.50. A weak factorization system in a category is a pair of classes of maps (L,R) with the
following properties.

1. Every morphism factors as rl for l ∈ L and r ∈ R; and

2. L =� R and R = L�.

Example 2.9. The pair (InnHorn, InnHorn�) is a weak factorization system.

We would like to understand lifting problems with unique solutions.

Definition 2.51. In a category with coproducts, let f : A→ B be a morphism. We define the fold of f ,
denoted f∧: B

∐
A B → B, as the unique map making the following diagram commute.

B

B
∐

A B B

B A

f

f

id

id

f∨
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Proposition 2.52. Let f, g be morphisms. The following are equivalent.

1. We have f � g and f∨ � g.

2. The solution to any lifting problem for (f, g) exists and is unique.

Proof. (2)=⇒(1) is obvious. For (1)=⇒(2), existence is assumed, so we need only show uniqueness. Wait,
what does uniqueness mean in an arbitrary category?

Definition 2.53. A weak factorization system (L,R) is called an orthogonal factorization system if L =� R
and R = L� are realized by unique lifts.

Proposition 2.54. The factorization f = rl is unique up to unique isomorphism in an orthogonal factoriza-
tion system.

Proposition 2.55. ({surjections}, {injections}) form an orthogonal factorization system in Set. (Proof is
obvious.)

Proposition 2.56. For any class of simplicial maps S, the pair (S ∪ S∨, (S ∪ S∨)�) is an orthogonal system.

2.16 (2/23) Degenerate cells

We want to concretely understand monomorphisms of simplicial sets. For this, recall that we defined the
boundary of ∆n as the subcomplex of ∆n whose k-cells are the non-surjective maps [k]→ [n]. Write Cell
for the class of inclusions ∂∆n ↪→ ∆n and InnFib:= Cell�. Since Cell consists of monos, we know Cell
contains all monomorphisms. Our main theorem is the converse.

Proposition 2.57. The class Cell is exactly the class of monomorphisms of simplicial sets.

We’ll prove this (Proof 2.17) once we’ve set some stuff up.
Toward proving this, recall the notion of degenerate cells: a cell σ : ∆n → X is called degenerate if

there exists a non-injective operator f : [m]→ [n] such that σ = τf . Since every simplicial operator factors
uniquely as f = f injfsurj , we see that if σ is degenerate if and only if there is some non-identity surjective
f such that a = bf . A cell which is not degenerate is called non-degenerate. We write Xn = Xdeg

n

∐
Xnd

n

for the decomposition of Xn into (non)-degenerate cells. Neither assemble to a subcomplex.

Proposition 2.58. Here are some straightforward facts about degenerate cells.

1. If f : X → Y is a map of simplicial sets, then f(Xdeg
n ) ⊆ Y deg

n .

2. If f : X → Y is a map of simplicial sets, then f−1(Y nd
n ) ⊆ Xnd

n .

3. If A ↪→ X is a subcomplex, then

And
n = Xnd

n ∩An, and

Adeg
n = Xdeg

n ∩An.

4. The elements of (∆n)ndk are in bijection with the subsets of [n] of size k.

5. The simplicial n-sphere ∆n/∂∆n, defined as the pushout of ∆n ↢ ∂∆n → ∆0, has exactly two
nondegenerate cells: its unique vertex and the generator ⟨0, 1, . . . , n⟩. In other words, the image of
∆0 → ∆n/∂∆n and of the generator in ∆n → ∆n/∂∆n in the pushout square:

∂∆n ∆n

∆0 ∆n/∂∆n

The Eilenberg-Zilber lemma says that every cell a of X occurs uniquely as a = bσ for a nondegenerate
b and surjective operator σ. (This is not too complicated; the nontrivial part is uniqueness.) Let’s state this
in a slightly different, stronger form.
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Proposition 2.59. If X is a simplicial set, then for every n the map∐
j≥0

Xnd
j ×Hom∆surj ([n], [j])→ Xn

Given by (j, a, σ) 7→ aσ is a bijection. Furthermore, this map is natural with respect to surjective operators
[n′]→ [n] and with respect to monomorphisms of simplicial sets X → X ′.

There are various things to be said now. I think I will move on, and refer back to these things when
they are needed.

2.17 (2/23) The skeletal filtration

If σ : ∆n → X is an n-cell, it uniquely factors as ∆n → ∆m → X where the first map is surjective and
the second is nondegenerate. So σ is “really" an m-cell, for some m ≤ n. Now, we want a notion of the
k-skeleton of X. Its n-cells should be the n-cells of X which are “really" j-cells for some j ≤ k.

Definition 2.60. Let X be a simplicial set. The k-skeleton of X, written SkkX, is the smallest subcomplex
containing all cells of dimension ≤ k. Thus, we have

(SkkX)n =
⋃

0≤j≤k

{yf : y ∈ Xj and f : [n]→ [j]}.

A nondegenerate cell ∆k → X determines a cell ∆k → SkkX. This map carries ∂∆k−1 to Skk−1X.

Proposition 2.61. The evident square∐
i∈Xnd

k
∂∆k Skk−1X

∐
i∈Xnd

k
∆k SkkX

Is a pushout square. More generally, if A ⊆ X is a subcomplex, the following is a pushout square.∐
i∈Xnd

k /And
k

∂∆k A ∪ Skk−1X

∐
i∈Xnd

k /And
k

∆k A ∪ SkkX

It is in this sense that simplicial sets are built out of standard simplices: a simplicial set X is filtered by
X0 = Sk0X ⊆ Sk1X ⊆ Sk2X ⊆ · · · , and each Skn is obtained from Skn−1 by attaching copies of ∆n as
in Proposition 2.61.

Now we are ready to prove our characterization of monomorphisms (Proposition 2.57).

Proof. A monomorphism of simplicial sets is isomorphic to an inclusion A ↪→ X. It is clear that X ∼=
colim−→k

A ∪ SkkX. But see that, by the above proposition, the maps A ∪ Skk−1X → A ∪ SkkX arise
via cobase change from coproducts of maps in Cell. Then the inclusion is exhibited as a countable
composition(?) of maps in Cell, thus is in Cell.

And so we have some handle on monomorphisms in sSet now.

Corollary 2.62 (Geometric realizations are CW). Recall that we constructed the geometric realization
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functor | − | : sSet→ Top as a left adjoint. Left adjoints preserve colimits, hence we have a pushout diagram∐
a∈Xnd

k
∂∆k

top |Skk−1X|

∐
a∈Xnd

k
∆k

top |SkkX|

Additionally, we have |X| = lim→ |SkkX|. This describes a canonical CW structure on the geometric
realization |X| of a simplicial set. Evidently, cells of |X| correspond to nondegenerate simplices of X.

2.18 (2/25) Pushout-products, pullback-homs

Let f : A→ B and g : K → L be morphisms in sSet. We define the pushout-product of f and g, denoted
fg, as the unique dotted map making the following pushout square diagram commute.

A×K A× L

B ×K (B ×K)
∐

A×K(A× L)

B × L

id×g

f×id

id×g

f×id

f□g

Dually, we define the pullback-hom of f and g, denoted f□g, to be the unique dotted map making the
following pullback square diagram commute.

Fun(L,A)

Fun(K,A)×Fun(K,B) Fun(L,B) Fun(K,A)

Fun(L,B) Fun(K,B)

Fun(id,f)

Fun(g,id)

f□g

Fun(id,f)

Fun(g,id)
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3 March

3.1 (3/5) Pullback-hom as an enriched lifting problem

Suppose given g : K → L and h : X → Y . We have the pullback-hom

h□g : Fun(L,X)→ Fun(K,X)×Fun(K,Y ) Fun(L, Y ).

The vertices of Fun(L,X) are morphisms L→ X in sSet. The vertices of Fun(K,X)×Fun(K,Y ) Fun(L, Y )
are those pairs of morphisms (s : K → X, t : L → Y ) such that hs = tg, i.e. lifting problems for (g, h).
The pullback-hom h□g takes a morphism w : L→ X and composes it to (wg, gh). This gives us a lifting
problem for (g, h) that is solvable. Then the following is clear.

Proposition 3.1. The pullback-hom h□g is surjective on vertices iff g � h.

In this sense, h□g encodes an “enriched" lifting problem for (g, h). The target Fun(K,X)×Fun(K,Y )

Fun(L, Y ) parametrizes lifting problems for (g, h) while the source Fun(L,X) parametrizes families of
lifting problems together with a chosen lift.

Also, let’s talk about so-called adjunctions of lifting problems. The product and function complex
constructions are adjoint. Ultimately, this leads to the following.

Proposition 3.2. One has (f□g) � h if and only if f � h□g.

Here’s a special case. Take K = ∅ and Y = ∗. Then the proposition gives us that

(f × idL) � (X → ∗)⇐⇒f � (Fun(L,X)→ ∗).
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5 May

5.1 (5/3) Operads for (Peter) May

For May, I will learn about operads and monads. Here are my motives.

(1) Peter May coined the term operad.

(2) They’re interesting and fit into the∞-categorical framework, eventually.

(3) I read some of Moerdijk-Weiss’s Dendroidal sets for Charles’ Kan Seminar and thought it was
exicting.

(4) Peter May tipped me off that monads and operads would make a big appearance in his talks
for the 2023 UChicago REU. (Probably related to his recent work with Ruoqi Zhang and Foling
Zou.)

Here are some potential references.

(1) May, The Geometry of Iterated Loop Spaces (1971)

(2) Markl-Shnider-Stasheff, Operads in Algebra, Topology, and Physics (2000)

(3) Heuts, Simplicial and Dendroidal Homotopy Theory (2022)

(4) Markl, Operads and PROPs (2006)

(5) Lawson, En-ring spectra and Dyer-Lashof operations

Let me say what I think operads are supposed to do/be before I dive into it:
An operad abstracts away the structure of “an operation on a structure its identities/coherences." We’ll see
this worked out later, for the first time in Example 5.4. Here’s a vague indication as to why this is useful:
say an algebraic thing X has operations which “play nice" with its algebraic structure. If this occurs, it
can have useful consequences. It’s natural that we then (1) find and study objects for which this occurs,
and (2) study them in concert. But this has problems: (A) it may require lots of data to verify or realize
that X ’s operations “play nice" with its structure (coherence data), especially for complicated X, and/or
especially if we’re thinking up-to-homotopy, and (B) if we want to study such objects relative to each
other, we’ll have to compare several of these huge packages of data. Operads do the work for us: the idea
is to say, “let C be the operad codifying the possession of coherent operations." Then, given an objext X, a
choice (if one exists) of such structure on X amounts to a morphism C → E

ndX , the latter being a canonical “endomorphism operad" associated to X. That morphism essentially
says, “we can interpret the structure within C as some class of operations on X." In other words, for an
algebraic structure X, an operad classifies “coherent" operations on X, the details (e.g., how coherent?)
dependent on which operad you’re considering.

Maybe another way of putting it is that operads represent the formal algebraic theory, while we’re
interested in “instantiations" of these theories, i.e. their representations—I think we call these “algebras
over the operads."

OK, let me actually learn what these are now.

Definition 5.1. An operad, symmetric operad, or classical operad C is a collection of sets (C(i))i≥0 with
a distinguished operation 1C ∈ C(1) and functions γ : C(n)× C(k1)× · · · × C(kn)→ C(

∑
ks), which we

regard as operations, the unit operation, and as composition, respectively, and in this regard we require
that these structures are suitably associative, unital, and equivariant up to reordering of inputs.

Concretely, C is the data of

• (Operations) For each i ≥ 0, a set C(i) called i-ary operations; and

• (Composites) For each n ≥ 0 and k1, . . . , kn ≥ 0, a composition map γ : C(n) × C(k1) × · · · ×
C(kn)→ C(

∑
ks); and

• (Unit) A distinguished identity operation 1C ∈ C(1); and
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• (Symmetries) For each i ≥ 0, an action Σi → AutC(i)

satisfying the following conditions.

• (Unitality) For every operation d ∈ C(j), we have γ(1; d) = d and γ(d; 1×j) = d.

• (Associativity) Blah blah blah

• (Σn-Equivariance) For each Σk
1js = j, c ∈ C(k), ds ∈ C(js), σ ∈ Σk, and τs ∈ Σjs , we have

γ(cσ; (di)) = γ(c; (dσ−1i)) · σ(j1, . . . , js), and
γ(c; (diτi)) = γ(c; (di))(τ1 ⊕ · · · ⊕ τk).

Here, σ(j1, . . . , js) := the permutation of j letters given by permuting the k blocks of letters
determined by the partition j = Σjs according to σ.

Definition 5.2. An operad with no Σi-actions or equivariance is called plain or non-Σ or non-symmetric.

Definition 5.3. Above, we defined an operad in Set. We can make an analogous definition in any
bicomplete symmetric monoidal category (C,⊗,1). In this case, the unit/identity is a distinguished
morphism 1→ C(1). The symmetries become maps Σi → Iso(C(i), C(i)). Such a thing is called an operad
in C. This is like “enriching" an operad over a category.

Definition 5.4. A morphism of operads C → C′ is a collection of maps fi : C(i)→ C′(i) such that f1(1) = 1
and (equivariance, compatibility with composition).

Remark 5.5. As indicated, we think of C(i) as a set of i-ary operations, and the functions γ : C(k) ×
C(n1)× · · · × C(nk)→ C(

∑
ns) as taking a k-ary operation c and plugging in k other operations (di). The

Σn-equivariance demands that if we tamper with the inputs for c then plug in the (di), that is the same
as plugging in the (di) in a different order then tampering with the order of their inputs. See the little
picture.

 

An operad’s purpose in life is to help define algebras over an operad. Such a thing establishes an
“algebraic structure representing the operad" upon an object. Here is the definition.

Definition 5.6. Let C be an operad in a symmetrical monoidal C. A C-algebra A is an object A and maps
C(i)⊗A⊗i → A that are suitably associative, unital, and equivariant. ( We take A⊗0 = 1C.)

I’ll go over many examples soon. Some of these will let us reinterpret some of the above structures. But
for the rest of today, I’ll just make a little remark.

Remark 5.7 (Classical operads generalize monoids). Let C be a classical operad. (A non-Σ operad
works too.) There is an associated category j!C with one object and morphisms given by C(1), the unary
operations. Given f, g ∈ C(1), their composite g ◦ f := their image in C(1)× C(1)→ C(1), and the unit is
the identity operation 1C ∈ C(1). This checks out thanks to the unitality and associativity axioms.

Conversely, given a one-object category M, i.e. a monoid, we may form an operad j∗M with solely
unitary operations, given by (j∗M)(1) := HomM(∗, ∗). The unit and composition functions are obvious,
and the Σi-actions are trivial.

Altogether we get an adjunction

Monoids Operads
j!

j∗

⊣
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5.2 (5/5) Basic examples of operads

In what follows, let (C,⊗,1) denote a symmetric monoidal category.

Example 5.1. Let A be an object of C. If C is closed,1 we denote by E
ndA the endomorphism operad of A, defined by (E
ndA)(i) := Hom(A⊗i, A). The unit is idA ∈ E
ndA(1) and the compositions are given by composing tensor product maps. The right Σi-action is

given by the left Σi-action on tensor powers.

Proposition 5.8. Let A ∈ C and let C be an operad in C. Via the tensor-Hom adjunction, a C-algebra
structure on A is “the same thing as" a morphism C → E

ndA.

Example 5.2. We denote by Comm the commutative operad in Set. It is defined to have a single operation
Comm(i) := {∗} for every i.

Example 5.3. We denote by Assoc the associative operad in Set. It is defined to have Assoc(i) := Σi for
every i. The unit and Σi-action are obvious. The maps γ : Σn × Σk1

× · · · × Σkn
→ Σk1+···+kn

are defined
as follows: given σ ∈ Σn and τj ∈ Σkj regarded as matrices, one inserts τj in place of the 1 in the j-th
column of σ, for each 1 ≤ j ≤ n.

Proposition 5.9. In Set, Assoc-algebras (resp. Comm-algebras) are precisely monoids (resp. commutative
monoids).

In fact, we can encode monoids in the arbitrary C with operad actions. If (C,⊗,1) has finite
coproducts, for a finite set S let 1[S] denote the coproduct

∐
S 1.

Definition 5.10. We denote by Comm the commutative operad in C. It is defined to have Comm(i) := 1.

Definition 5.11. If C has finite coproducts, we denote by Assoc the associative operad in C. It is defined
to have Assoc(i) := 1[Σi]. The rest of its structure is mostly obvious.

Proposition 5.12. In C, the Comm-algebras are precisely the monoids in C. If C has finite coproducts, then
the Assoc-algebras are precisely the commutative monoids in C.

Remark 5.13 (Algebras over symmetric vs. plain operads). Above, we are regarding Assoc and Comm
as symmetric operads, and this is manifest in the structure of algebras over them. We can instead skip
any mention of Σn’s and consider Assoc, Comm as plain operads. If we do, then Comm-algebras become
precisely monoids in C. And Assoc-algebras become...something? Maybe this indicates we should avoid
plain operads if possible.

5.3 (5/6) Warm-up: monoids are Assoc-algebras

Let me work out a concrete example of how monoids are “the same thing as" Assoc-algebras.

Example 5.4 (How do Assoc-algebras encode monoids?). Let X be a set. Suppose it is a monoid, i.e. that
we have chosen a unital, associative product µ : X ×X → X. As I said yesterday, the monoid (X,µ) is
“the same thing as" an Assoc-algebra which is “the same thing as" a choice of morphism f : Assoc→ E

ndX .
I’ll describe the morphism f . Let me write en for the identity in Σn.

• f sends Assoc(1) = {∗} to the identity idX ∈ E
ndX(1).

• f sends e2 ∈ Assoc(2) = Σ2 to µ ∈ E
ndX(2).

• Where does f send σ ∈ Assoc(2) = Σ2? Equivariance demands that f(σ) = f(e2)σ =“swap inputs then
do f(e2) = µ."

1I.e., if it has an internal Hom
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• Similarly, the value of f on Assoc(3) is already totally determined by its value f(e2) = µ. Here’s why. In
Assoc, the composition γ : Assoc(2)×Assoc(2)×Assoc(1)→ Assoc(3) satisfies γ(e2, e2, e1) = e3. Since
f respects composition, it is determined at e3:

f(e3) = γ(f(e2), f(e2), f(e1)) = γ(µ, µ, e) =
(
(a, b, c) 7→ µ(µ(a, b), c)

)
.

Moreover, notice that γ(e2, e1, e2) = e3. Then by the same argument, we find that

f(e3) =
(
(a, b, c) 7→ µ(a, µ(b, c))

)
.

So, (ab)c = a(bc), where we’re suppressing µ from notation. Associativity! Similarly, we could take
into account the Σ3-action and show the other associativity identities hold, e.g. a(cb) = (ac)b. So, the
composition and equivariance conditions gave us associativity (with three inputs)!

• We could repeat the above to see that f ’s values on Assoc(n) are forced by f(e2) = µ. Again, the various
equalities γ(ek, en1

, . . . , enk
) = en1+···+nk

, the equivariance equalities, and the fact that f must respect
these force all the associativity laws.

Remark 5.14. The above example was nice in that after we specified f(e2 ∈ Assoc(2)) = µ, we could
determine the rest of f based on composition laws, equivariance, and the fact that f must respect those.
This is because in some sense, Assoc is “generated by" the element e2 ∈ Assoc(2).

So there’s an example of how we can use an operad to describe an algebraic operation with coherence. In
this case, coherence was strict associativity: we had equalities such as

(ab)c = a(bc), a(cb) = (ac)b, and a((bc)d) = ((ab)c)d.

These equalities were present “formally" in Assoc, and since µ : X ×X → X was associative, we could
find a corresponding f : Assoc→ E

ndX implementing µ.
That example was overkill. We “just know" what the “coherence" is—it’s associativity. The utility of

operads arises when the coherences are more complicated. Next time I will look at an example wherein
we’ll replace the set X with a space, µ with a continuous map, and strict associativity with “associativity
up to specified homotopy." In this case, we’ll have e.g. (ab)c ≃ a(bc) and the data of a homotopy realizing
this equivalence.

5.4 (5/9) Associativity up to homotopy, Stasheff associahedra, and A∞-operads

Let Y denote a based space. If X = ΩY , then X has a multiplication (loop concatenation). Let’s
parameterize it like so: for x, y ∈ X, define xy : [0, 1]/ ∼→ Y as the loop “do y over the first half of the
interval, then x over the other."

Generally, we have (ab)c ̸= a(bc), thus X is not an Assoc-algebra. Loop concatenation is not “strictly
associative." But clearly (ab)c ≃ a(bc), realized by (say) a linear reparametrization of [0, 1]. That would
be a map [0, 1]× I → X starting at a(bc) and landing at (ab)c. In Fun(X3, X), in which (ab)c and a(bc)
reside,2 such a homotopy is a path from (ab)c to a(bc).

Now say we’re concatenating four loops. There are five ways to do this (by reordering parentheses).
Say we want a choice of homotopy between each reordering. This is the same as taking the pentagon
below and sending it to Fun(X4, X), each vertex going to the labeled 4-ary operation. This pentagon is
not filled in.

((ab)c)d

(a(bc))d
a((bc)d)

a(b(cd))
(ab)(cd)

Again, we think of e.g. ((ab)c)d and (ab)(cd) as points in Fun(X4, X) and the image in Fun(X4, X) of the
edge between them as a choice of homotopy equivalence ((ab)c)d ≃ (ab)(cd).

2That is, the maps X3 → X given by “concatenate (a, b, c) to (ab)c, or to a(bc)."
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Actually, if we chose a path in Fun(X3, X) from a(bc) to (ab)c (i.e., if we’ve made a choice of
homotopy equivalence realizing (ab)c ≃ a(bc)), that already gives us the five homotopy equivalences
above—that is, where to send the pentagon above in Fun(X4, X).

Notice that there are determined TWO homotopy equivalences between e.g. a(b(cd)) and (ab)(cd).
One follows the path in Fun(X4, X) from a(b(cd)) to (ab)(cd) given by traversing the pentagon clockwise,
the other counterclockwise. Since X is a loop space, it turns out that there is a higher homotopy
equivalence between these two homotopies. (In general, this need not be the case, since π1Fun(X

4, X)
is not generally trivial.) Therefore, there is determined a continuous map from the solid pentagon to
Fun(X4, X). This is like a “higher" level of associativity, a “higher" level of coherence.

In fact, since X is a loop space, its multiplication is associative up to all higher homotopy coherences.
Let’s define an operad whose algebras are spaces with a multiplication that is associative up to all higher
homotopy coherences.

Definition 5.15. Denote by K the non-Σ Stasheff operad. It is defined to have K(n) := the convex
(n−2)-dimensional polygon with a vertex for each parenthetization of n ordered letters. (The composition
maps can be defined if we use a more explicit description; I won’t give that.)

It is somewhat clear (to me, maybe everyone) that the Stasheff operad K works largely because K(n)
is contractible for each n.

Definition 5.16. Let C be a non-Σ operad in Top. Say it is an A∞-operad if each C(n) is contractible. Say
that a space is an A∞-space if it an algebra over an A∞-operad.

Here’s the main thing.

Theorem 5.17. Up to weak equivalence,

1. A∞-spaces are precisely the K-algebras, and

2. Loop spaces are precisely the grouplike K-algebras.

5.5 (5/11) An-operad stuff

Let X be a space. Given an operation µ : X2 → X, we may ask if it is...

(1) Associative up to first homotopy, i.e. we can choose an equivalence µ(µ(−,−),−) ≃ µ(−, µ(−,−)).
A choice is the same data as a path K(3) = I → Fun(X3, X) from (ab)c to a(bc).

(2) (Harder) Associative up to second homotopy, i.e. not only can we choose an equivalence
µ(µ(−,−),−) ≃ µ(−, µ(−,−)), but can do so in such a way that the resulting homotopy
equivalences between e.g. µ(µ(µ(−,−),−),−) and µ(−, µ(µ(−,−),−)) are themselves realted
by a higher homotopy equivalence. (A “second order" homotopy equivalence.) Such a choice
amounts to (A) the structure described in (2), plus (B) a “compatible" map from the solid
pentagon K(4) to Fun(X4, X) which sends the vertices to the various parenthetizations of abcd.
See (5/9).

...

(∞) (Even harder) Associative up to all higher homotopies, i.e. we can choose a morphism K → E
ndX such that the path K(2) = I → E
ndX connects (ab)c and a(bc).

(?) (Too hard) Strictly associative, i.e. µ(µ(−,−),−) = µ(−, µ(−,−)).

The structure of (∞) on X is intuitively captured by a choice of K-algebra structure on X (⇐⇒ a choice
of A∞-algebra structure). We saw that if X ≃ ΩY and we take µ = loop concatenation, then X has a
K-algebra structure. Moreover, up to (some notion of equivalence between K-algebras?), all grouplike
K-algebras arise from a loop space and loop concatenation. That’s the n = 1 case of May’s recognition
principle.

We’re often thinking about the case where µ is only associative up to n-th homotopy for some n <∞.
For example, homotopy associative H-spaces are precisely those with an operation that is associative up to
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first homotopy.3 (And, in my notation, there is something which might be called “associative up to no
homotopies," whose algebras are precisely not-necessarily-homotopy-associative H-spaces.)

We want to characterize these structures with operads too. This means taking the data of an A∞-space
and truncating its coherence data at the n-th level. So for example, an “A3-space" should be a based space
X, a homotopy monoidal structure µ : X2 → X, and a homotopy equivalence K(3) = I → Fun(X3, X)
from (ab)c to a(bc). Then an “An-operad" should be an operad whose algebras are precisely An spaces,
modulo weak homotopy equivalence.

Our flagship A∞-operad is the Stasheff operad K. Each associahedron K(i) is a CW complex (in fact
a simplicial complex) in an obvious way. My first thought was, “maybe taking the (n − 2)-skeleton of
every K(i) will produce an An-operad." After all, taking e.g. n = 3, if we take the 1-skeleton of K, call it
K3, then an algebra over this operad will have a homotopy monoidal structure (specified by where we
send K3(2) = ∗) that is homotopy associative (specified by where we send K3(3) = I), but it will NOT be
“associative up to second homotopy" since K3(4) is the hollow pentagon. (The image of its interior is what
would have specified the “second-order homotopy coherence" for associativity.)

BUT, this thing K3 is NOT an operad. For a simple reason: if K3(4) contains intervals, then composi-
tion necessitates that K3(5) contains products of intervals. (We haven’t precisely defined composition, but
no matter.) But this proposal for K3 is such that K3(5) has no products of intervals, so it doesn’t work.

I don’t think we’re far off, though. There’s a free operad construction on “collections of objects"
(yet-undefined) that I suspect will recover an operad from an appropriate n-truncation of K which should
be rightfully called an An-operad.

5.6 (5/13) Rings via operads?

Tangent today. So far, I’ve thought of operads as devices for studying the structure of “an operation
with coherences" on a given object. We also care about rings and ringlike structures. These have TWO
operations, plus coherence data for identities that may involve BOTH operations at once. (Distributivity.)

Question 5.18. Can we use operads to capture the structure of rings?

The answer depends on the base category! We cannot use operads to characterize rings “all at once,"
i.e. in Set. We can instead try changing our base category to “handle" some of one operation first, though—
we’ll find that we can recover rings as algebras over operads in Ab.

Let’s start in Set. We want an operad R such that R-algebras are precisely rings. Or commutative rings—it
won’t matter, since R does not exist in either case. I’ll give two proofs why.

The first proof is moral, not a real proof. Suppose R is such that R-algebras are precisely rings. Then
there should be “addition" and “multiplication" elements A,M ∈ R(2) such that R’s compositions realize
the identity a(b+ c) = ab+ ac. The issue is that the 3-ary function ab+ ac calls a in more than one input
spot. This is NOT expressible using an operad’s notion of composition. The closest we can get is
γ(A,M,M) ∈ R(4), but this is ab+ cd, not really what we wanted. Thus, we cannot impose distributivity.

Here’s a formal proof. First note: there’s an operad Set× whose i-th object is a set of size i and whose
composition arises from the Cartesian product. For an operad C, a C-algebra is precisely a morphism
C → Set×. The category Operad has a terminal object whose algebras are monoids,4 so there’s a functor
S : Monoid → AlgC. It takes each map ∗ → Set× and postcomposes it with the unique map C → ∗. I
THINK the functor S : Monoid→ AlgC just takes a monoid, forgets its structure, and endows it with the
structure of a C-algebra; THUS, this functor fits into a commutative triangle with the forgetful functor.
BUT, the following proposition says that there are NO functors Monoid → Ring commuting with the
forgetful functor, so there must not exist an operad C in Set such that AlgC ∼= Ring.

Proposition 5.19. There are no functors Monoid→ Ring commuting with the forgetful functors to Set.

Zhen Lin proves this in his MSE answer here.

So there are no operads in Set whose algebras are rings. Here’s a workaround: we can replace Set with a
category of objects which have addition already built in, that would be Ab. Then we can finish the job
with an operad in Ab and its algebras will recover Ring.

3Actually, this is wrong as I’ve described “associativity up to n-th homotopy," but I’m just trying to give some intuition for
An-algebra structures, so I’ll gloss over this point as it’ll all work when I actually get to An-operads.

4If we’re thinking of symmetric operads, the terminal operad is Comm. If we’re thinking of plain operads, it is Assoc.
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Let Comm denote the commutative monoid operad in Ab. Its objects are trivial groups and its actions
are trivial also.

Suppose G is a Comm-algebra, i.e. an abelian group with a map f : Comm→ E
ndG. This data distinguishes two elements 1G := f0(∗) ∈ G and × := f2(∗) ∈ Hom(G2, G). Since

C(1) = {∗}, we have that
γ(×, id, 1G) = γ(×, 1G, id) ∈ C(1).

Since f must preserve composition, we get that g × 1G = 1G × g = g for every g ∈ G. (How to finish???)

OK, in the above I started with and tried to show its algebras in Ab are commutative rings, I should’ve
started with Assoc and tried to show its algebras in Ab are rings, but I’m getting tired. (I couldn’t figure
out how to get the distributive property anyway...)

Anyway, I’ll remark that we do something similar in homotopy theory. We want a good notion of
“spectra that are ringlike up-to-homotopy," and we must play the same game: find a category of objects
with addition built-in (that would be Sp) and then take algebras over an operad for commutativity “up to
homotopy." (I think that’s little disks?)

We are foreshadowing!

5.7 The rest of May

There are some notes I have not texed, and I also spent some time working on a condensed math seminar
I’ll be organizing at the University of Chicago in June. (I will also be there, probably studying more operad
stuff with Peter May.) Maybe I will upload the rest of my May notes eventually?
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6 June

6.1 (6/13) June activities, monoidal categories

There are a few things going on.

1. Peter is giving lectures on operads and algebraic K-theory.

2. I’ll probably be reading some of these lecture notes about algebraic K-theory.

3. I’m organizing a seminar on elementary condensed math. (And teaching quite a bit of basic
category for that, as well as for other REU participants who just want to learn basic category
theory.)

All this will be taking up most of my time. And it all somehow relates somehow to my goal
of understanding higher category theory, especially (2). So I’ll be sporadically writing here my inner
monologue as I learn/do this stuff.

Today Peter spoke about A∞-spaces. I already wrote about those. But Peter also mentioned monoidal
categories, and this led me to a little question we were not sure about.

Let me get to explaining my thought.

Definition 6.1. A monoidal category is the data of a category C together with

• A functor ⊗ : C× C→ C called the tensor product;

• A distinguished object 1 ∈ C called the unit;

• Isomorphisms λ : 1 ⊗ − → − and ρ : − ⊗ 1 → −, we call the left/right unitor and whose
components we denote λX , ρX ; and

• An isomorphism
A : (−⊗−)⊗− ∼= −⊗ (−⊗−)

which we call the associator and whose components we write AX,Y,Z .

And these data must have the following properties.

• The triangle identity holds:

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y

AX,1.Y

ρX⊗1 1⊗λY

• The pentagon identity holds: Put it in?

Follow-
up after
discussion

6.2 (6/15) Initial, final objects

I’m thinking about initial/final objects so that I can define a stable∞-category .
Topological categories are one model for ∞-categories. In a topological category, one potential

definition of a final object is obvious: it is a final object in the underlying ordinary category. Call this
a “strict final object." Consider (say) the topological category CGHaus. There, the point ∗ is a strict
final object. However, there are homotopy-equivalent spaces (i.e., contractible spaces) which are not
isomorphic to ∗ in CGHaus—that’s not good since an ∞-categorical definition (i.e. of final objects)
should be homotopy-invariant.

But this kind of immediately indicates the (first) correct definition.

Definition 6.2. An object of a topological category C is called final if it is final in hoC (regarded as
enriched over hoCW). Thus, an object X is final iff HomhoC(Y,X) ∈ hoCW is contractible for every Y . Why

weakly
con-
tractible
in hoCW?
Why not
final as an
object in
the cate-
gory? Is
there a
different
definition
of “ini-
tial/final
in an en-
riched cat-
egory"?
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How to port this idea to quasicategories (which we must do in a way that results in the same notion
upon passage to the homotopy category)? A geometric definition: if x ∈ C is terminal, then everything
“has an arrow to x," so the “collection of arrows to x" should be “like a deformation retract of C." Maybe
that made sense, here’s the definition.

Eventually
define
over and
under-
categories.

Definition 6.3. Let x be a vertex in a quasicategory C. We say x is intial if Cx/ → C is a trivial fibration.
Likewise, we say x is terminal if C/x → C is a trivial fibration.

Remark 6.4. By definition, a vertex x ∈ C is terminal⇐⇒ every map f : ∂∆n → C such that f(n) = x
extends to a map f : ∆n → C. Dually for terminal objects.

Remark 6.5. If C is a nerve, restriction Hom(∆n,C) → Hom(∂∆n,C) is an equivalence for n ≥ 3.
Therefore the terminal objects of nerves are the terminal objects of their underlying categories.

Proposition 6.6. Let HomR
C (x, y) denote the∞-category of right-fibrations x→ y in an∞-category C. It

is a Kan complex. Furthermore, an object y is terminal ⇐⇒ HomR
C (x, y) is contractible for every object x.

(Dually for initial objects.)

Proposition 6.7. An object y is terminal⇐⇒ HomC(x, y) is contractible for every object x. (Dually for initial
objects.)

Proposition 6.8. Let C denote a quasicategory and C′ the full subcategory of final objects. Then C′ is a
contractible Kan complex. (Likewise for the full subcategory of initial objects.)

6.3 (6/18) Stable∞-categories

Definition 6.9. Let C denote an ∞-category. We say an object in C is a zero object if it is initial and
terminal. If C has a zero object, we call C pointed.

If C is pointed, its full subcategory of zero objects is a contractible Kan complex, so zero objects are unique
up to equivalence.

Remark 6.10. As in the ordinary case, an∞-category C is pointed if and only if it has an initial object ∅,
a terminal object 1, and a morphism 1→ ∅.

Remark 6.11. If C is pointed, then HomC(X, 0)×HomC(0, Y ) is a contractible Kan complex. The natural
map HomC(X, 0) × HomC(0, Y ) → HomC(X,Y ) then locates a unique element 0 ∈ HomhoC(X,Y ). We
also call this the zero morphism.

Definition 6.12. An∞-category C is called stable if it has the following properties.

(1) C is pointed.

(2) Every morphism in C admits a fiber and cofiber.

(3) “Every morphism is the cokernel of its kernel and the kernel of its cokernel."

Condition (3) is imprecise, but that is to make obvious the analogy with abelian categories. OK now let Actually,
triangu-
lated cat-
egories
– under-
stand this?

me make it precise. This will also mean defining the things in (2).

Definition 6.13. Let C be a pointed ∞-category and f : X → Y a morphism. A kernel or fiber of f is
a homotopy pullback of f with 0 → Y . We define a cokernel or cofiber of f dually. As in the following
diagram.

ker(f) 0 X Y

X Y 0 coker(f)f

f
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Definition 6.14. Let C be a pointed∞-category. A triangle (g, f) in C is a commutative diagram We write it
(g, f) but
a triangle
consists of
more data
– write
that in

X Y

0 Z

g

f

We say a triangle (g, f) is a fiber sequence (resp. cofiber sequence) if it is a pullback (resp. pushout).

Remark 6.15. If f : X → Y is a morphism in C, then a fiber of f is precisely a fiber sequence (f, g) for
some g. Likewise, a cofiber of f is any cofiber sequence (g, f).

Definition 6.16. A category C is called stable if it has the following properties.

(1) C is pointed.

(2) C admits all fibers and cofibers.

(3) A triangle in C is a fiber sequence⇐⇒ it is a cofiber sequence.

Remark 6.17. Condition (3) is like “cokernels of kernels are isomorhic to kernels of cokernels." Is there a
precise restatement of (3) in this vein that isn’t a mouthful?

Remark 6.18. Stability is a property, not a structure.

Remark 6.19. At least for me, “stability" here is used with an eye toward “stablizing the loop and
suspension functors on Top∗." And indeed, spectra will appear as precisely the stabilization of Top∗ with
respect to those functors.

Definition 6.20. Let C denote a pointed∞-category.

• If C admits cofibers, there is determined a suspension functor Σ: C → C which informally
associates to X its homotopy pushout against two zero maps

X 0

0′ ΣX

• If C admits fibers, there is determined a loop-space functor Ω: C→ C which informally associates
to X its homotopy pullback along two basepoint-inclusions

ΩX 0

0′ X

Remark 6.21. The formal definition of Σ,Ω in general takes some work, simply because it takes work to
give any concrete description of functors between∞-categories. Lurie’s brief description of Σ,Ω begins in
HA p. 23 at the bottom. A very nice unpacking of this construction is given by Alberto García-Raboso in
this article.

The bottom line is that we get a “functorial construction of cofibers," which means a functor
Fun(∆1,C) → Fun(∆0,C) ∼= C which on objects assigns a cofiber to each morphism in C. This is quite
nice—there is really no good nice way to do this for triangulated categories. Grothendieck wrote a
1,976-page manuscript on “derivators" which are (a kind of?) “tool" to handle this problem that is just
too hard and more concisely dealt with using∞-categories. (Do people use derivators?) Grothendieck’s
manuscript affirms the belief that this is definitely a problem worth solving, in any case.

Learn tri-
angulated
categories
and dis-
cuss the
relation to
stable ∞-
categories;
essentially,
HA p. 24-
30?
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6.4 (6/20) Idempotents

Trying to read some algebraic K-theory papers, I come across idempotent completions (for∞-categories).
I’ve heard of these before but never really thought about them. I’ll think about them today.

I’m looking at Kerodon Section 03Y9 and HTT 4.4.5 for this.

First we review some ordinary category theory.
Retracts should be maps fixing sub-sets/spaces/objects. Formally, denoting by C an ordinary category,

we say Y is a retract of X if there exists some r : X → Y factoring idY : Y → Y , i.e. some diagram

X

Y Y

i r

idY

Remark 6.22. Let Ret or Idem+ denote the category consisting of an “abstract retract diagram." (See
Construction 03YB.) There is a tautological bijection {functors Ret→ C} ∼= {retract diagrams in C}.

Remark 6.23. See that i ◦ r : X → X is an idempotent. In fact, this idempotent canonically determines
X up to isomorphism: X is the equalizer of idX and i ◦ r. One may ask about the converse: if ϕ : X → X
is idempotent, does X have a retract Y such that ϕ = i ◦ r? (This Y is uniquely determined if it exists.) If
this is the case, i.e. if the injection

{retracts of X}/ ∼= ↪→ {idempotent morphisms X → X}

is a bijection for all X, we say that C is idempotent complete.

Definition 6.24. In general, we say an idempotent ϕ : X → X is split if it arises from a retraction of X,
i.e. if ϕ = i ◦ r for some r : X → Y and i : Y → X satisfying r ◦ i = idY .

Remark 6.25. Thus, an ordinary category is idempotent complete⇐⇒ every idempotent splits.

Proposition 6.26. If an ordinary category C has equalizers or coequalizers, then it is idempotent complete.

What’s ado about retracts and idempotents in∞-categories, then? Whatever they are, they should
become ordinary retracts/idempotents upon passage to the homotopy category. Lurie explains two reasons
that this is insufficient, though. Explain

the rea-
sons? Not
super im-
portant I
think.

The ordinary story suggests that there should be a relationship (correspondence!) between ∞-
categorical retracts and idempotents. Let’s start with retracts.

Let C denote an∞-category and X an object of C.

Definition 6.27. We say an object Y ∈ C is a retract of X if there exists r : X → Y and i : Y → X such
that r ◦ i = idY , i.e. there exists a 2-cell witnessing that composition.

Proposition 6.28. An object Y ∈ C is a retract of X ⇐⇒ there exists a functor F : NRet→ C taking the
“abstract retract object" to Y and the other object to X. (Lurie would say the F “exhibits Y as a retract of X.")

As in the ordinary case, we can classify retracts using (split)idempotents.

Definition 6.29. Define the category Idem to have one object X̃ and one non-identity morphism e : X̃ → X̃
with composition law e ◦ e = e.

Definition 6.30. Let C be an∞-category. An idempotent in C is a functor F : N•Idem→ C.

Remark 6.31 (We recover the ordinary case). Suppose that C is an ordinary category. Since the nerve
functor is fully faithful, functors N•Idem→ N•C are in bijection with functors Idem→ C. The former are
precisely the idempotents in an∞-category by definition, and the later are idempotents in C by inspection.
Thus,∞-categorical idempotents recover ordinary ones.

Definition 6.32. Let C be an∞-category. An idempotent I : N•Idem→ C is called split if there exists a
functor R : N•Ret→ C (a “retract diagram in C) extending I along the obvious functor N•Idem ↪→ N•Ret.
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Prove that
given iso-
morphic
idem-
potents
I ∼= I ′,
one splits
iff the
other
splits. This
isn’t too
hard—I
just want
to do
this to
force me
to think
about isofi-
brations?

Remark 6.33. These, too, recover ordinary idempotents.

Proposition 6.34. Splittings of an idempotent are essentially unique. Precisely, we mean that restriction

T : Fun(N•Ret,C)→ Fun(N•Idem,C)

is fully faithful. (By definition, its essential image is the full subcategory of split idempotents in C.)

Proof. Idem sits naturally inside Ret. That’s kind of the whole point. Clearly, Ret is generated by Idem
under retracts; this implies that any F :• Ret → C is left and right Kan extended from its restriction
T (F ) : N•Idem → C (Proposition 03YQ). This lets us apply Corollary 030S (which I haven’t really
unpacked) to conclude that T is a trivial Kan fibration. Trivial fibrations of Kan complexes are fully faithful.
(Consult Rune’s notes.) Understand

7.3.6.15
one day?Remark 6.35. Now let me rehash and give some ideas:

• If C is an ordinary category, we may speak of idempotents and retracts. By definition, given an
object X, retracts of X (up to isomorphism) biject with split idempotents X → X. But not every
idempotent splits. Varying X, we get a fully-faithful functor Fun(Ret,C) ↪→ Fun(Idem,C). The
inverse problem amounts to taking a equalizer or coequalizer; if ϕ : X → X is idempotent, then
the (co)equalizer of ϕ with idX realizes a retract of X (and retracts in general are uniquely
determined).

• If C is an∞-category, we define retracts of X as objects Y with a certain property analogous to
ordinary retracts. If Y is a retract of X in this sense, there is determined a functor N•Ret→ C,
unique up to isomorphism. We do a bit more work for idempotents: the most obvious “property"
of idempotency actually is undesirabley ambiguous, so we define idempotents as functors Write this

out?N•Idem→ C. As in the ordinary case, we get a fully faithful (i.e. a trivial Kan fibration) functor

Fun(N•Ret,C)→ Fun(N•Idem,C).

We can characterize its essential image as those idempotents with the property of splitness,
defined analogously as in the ordinary setting. Once again, the inverse problem (i.e. determining
whether an idempotent splits, i.e. extending some idempotent N•Idem→ C to a retract diagram
in a Kan-ny way?) amounts to finding the limit or colimit of N•Idem→ C.

• Also see Section 03Y9.

6.5 (6/21) I hate idempotents today. K-theory?

I physically cannot think about idempotents after yesterday. Luckily there is a different thing I also need to
understand for modern algebraic K-theory, that being (modern?) algebraic K-theory. I already understand
a little bit.

Let me collect some references.

• Rune Haugseng’s 2010 notes The Q-construction for stable∞-categories.

• The MO thread Motivation/interpretation for Quillen’s Q-construction? and some of what’s
referenced therein.

Let’s start somewhere classical. In The Geometry of Iterated Loop Spaces, May defined the little cubes
operads Ck, the prototypical Ek-operad. Given a space X, we can form the free Ck-algebra Ck[X]. Any k-fold
loop space is a Ck-algebra, in particular ΩkΣkX. We get a natural Ck-algebra map e : Ck[X] → ΩkΣkX
from the natural map X → ΩkΣkX of spaces.5 This e is a weak equivalence⇐⇒ X is grouplike. This is What

monoid
structure?

the approximation theorem, which is used to prove the following.

Theorem 6.36 (May’s recognition theorem). X is a grouplike Ck-algebra⇐⇒ X is weakly equivalent to
ΩkY for some Y .

5Our spaces are based, of course. We may also want a based variant of the free Ck-algebra on a space?
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Let me sketch the hard direction of this (not going into detail about the hard parts). Suppose as given
X a Ck-algebra. There is a map of monads αk : CkX → ΩkΣkX induced by the natural map X → ΩkΣkX.
The map X → ΩkΣkX then induces a map X → ΩkB(Σn, Ck, X), where that last space is a two-sided bar
construction. We think of it as “like a k-fold delooping of X." Furthermore, αk was a group completion,6

so X → ΩkB(Σn, Ck, X) is a group completion also. (Here, the monoid structure on π0X is induced by
the Ck-algebra structure.) Therefore, it is a weak equivalence if and only if X is grouplike, in which case
we’ve realized X as a k-fold loop space. Hey, that

was kind
of cool.
Think
more
about this
two-sided
bar con-
struction?
All this
operad-
monad
stuff fits
together
nicely.

What’s the relation to K-theory? Take k = 1. The above says that an A∞ structure on X lets us
“deloop" X (that delooping being B(Σn, Ck, X) above) and construct a group completion X → ΩBX. In
other words, you get what you might expect: a “homotopy" monoid X has a “homotopy" group completion
X → ΩBX.

Write
more
about
group
comple-
tions?

Trying to sort my thoughts out about group completions is actually a bit of a pain.7 I’m going to
writhe in my stupidity and stop writing for today. Also see this MO post.

6.6 (6/26) Structure of HomC(−,−) for (various adjectives) categories

Recall that a topological category is one enriched over CG. In some form, Whitehead’s theorem says
that every space X is weakly equivalent to a CW-complex X ′, unique up to a unique weak equivalence.
Therefore, X 7→ [X] := X ′ defines a functor θ : CG→ hoCW. This functor exhibits hoCW as a localization
CG[w−1] at weak equivalences. It happens that θ preserves products. By general procedure, given such a
nice functor θ, any CG-enriched category may now be canonically enriched (via θ) over hoCW. Now given
a topological category C, we define hoC to have the same objects and we define HomhoC(X,Y ) to be the
CW-approximation [HomC(X,Y )] ∈ hoCW.

Proposition 6.37. The homotopy category of a topological category is canonically enriched (via Whitehead’s
theorem) over hoCW, i.e. the homotopy category of spaces.

Now let C denote a quasicategory. Recall that a morphism f : X → Y between X,Y ∈ C is a
1-simplex such that d1(f) = X and d0(f) = Y . Morphisms f : X → Y are in bijection with the vertices of
the mapping space MapC(X,Y ) defined as the fiber product

MapC(X,Y ) Fun(∆1,C)

∆0 Fun(∂∆1,C) ∼= C× C
∗7→(X,Y )

(One could also define this as a fiber product over Fun(∆1,C).) This defines MapC(X,Y ) as a simplicial
set. In fact, MapC(X,Y ) is a Kan complex. The shortest proof of this proceeds as follows.

• The morphism i : ∂∆1 → ∆1 is a monomorphism and is bijective on vertices. This implies that the
restriction map i∗ : Fun(∆1,C)→ Fun(∂∆1,C) is conservative (Charles’ notes, 37.1; this works
for map of simplicial sets.) Therefore the (trivial) map MapC(X,Y )→ ∆0 is conservative. Since
every edge in ∆0 is an isomorphism, it must have been so in MapC(X,Y ). Thus MapC(X,Y ) is
an∞-groupoid, i.e. a Kan complex by Joyal’s theorem.

Proposition 6.38. A quasicategory is “enriched over spaces" in the sense that any mapping space between
two objects is a Kan complex.

This is sort of internal to a particular quasicategory. In the Joyal model structure on sSet, the fibrant
objects are precisely the quasicategories.

There’s a recurring theme of “infinity-categorical things have a space of morphisms between objects."
Whatever “space" means to you. Now, let C denote a simplicially-enriched category. Simplicial sets are
“space-ish," but we may ask about those simplicially-enriched categories whose hom-sets are all Kan
complexes. That makes them really space-like.

6Is it just a group completion of spaces? Is there more to this statement?
7In the process, I found this nice article from Sanath Devalapurkar. Also these notes of Dylan Wilson’s.
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Proposition 6.39. There is a model structure on the category of simplical categories, called the Bergner
model structure whose fibrant objects are precisely the categories enriched in Kan complexes. Furthermore,
there is a Quillen equivalence between this model category and sSet with the Joyal model structure.

This is in HTT? I have heard it is not easy. I wonder if the proof uses anywhere that (by construction)
the most natural definition of “the mapping space between objects of a quasicategory" form Kan complexes.

6.7 (6/28) Anima and other examples of∞-categories via N c

First, I just wanted to record a characterization of (ordinary) limits and colimits I learned. Let C denote a
small category, J a small diagram category, and ∆ : C → Fun(J,C) the “diagonal" functor c 7→ (J 7→ c).
Furthermore, assume that C has all J-shaped colimits.

The assignment (ϕ : J → C) 7→ colim−→ϕ defines a functor CJ → C. I want to show that this is
left-adjoint to ∆. There are many ways to do this (some of which are kind of interesting to think about...)
Maybe the quickest way uses the following:

• A functor F : A→ B is a left adjoint iff one can specify, for each b ∈ B, an object Gb ∈ A and a
“universal arrow" ϵb : b→ F (Gb).

That this is fulfilled for F = colim−→ : CJ → C is true, more-or-less by definition of colimits. The rest is
vaguely “determined," maybe up to choice. One could also proceed via the following.

• Given functors F : A → B : G, an adjunction F ⊣ G is determined by a universal natural
transformation η : idA=⇒GF .

Again, in our case, this is immediate by the definition of colim−→. Namely, given a diagram ϕ : J → c, its
colimit colim−→ϕ is a universal cone under ϕ, which is precisely the data of a universal morphism (in cJ)
ϕ→ ∆colim−→ϕ. Letting ϕ vary, we assemble η.

Proposition 6.40. If C is small and J is a small diagram category, and furthermore C is J-cocomplete, then
colim−→ : CJ is left-adjoint to the diagonal ∆ : C→ J.

Analogously, the limit functor is right-adjoint to ∆. I think, in fact, that the existence of any left (resp.
right) adjoint to ∆ is equivalent to cocompleteness (resp. completeness) of C.

Anyway, that is not what I wanted to focus on. An anima is an∞-category whose homotopy category
is a groupoid. (In other words, anima are∞-groupoids.)

Example 6.1. Joyal’s theorem says that anima are precisely the Kan complexes.

Example 6.2 (Cores are anima). The core of∞-category, i.e. “the maximal∞-subgroupoid," is an anima.
Let’s recall how to construct this. If C is an ordinary category, then Ccore is the subcategory spanned by
isomorphisms in C. For C an∞-category, we define its core as the pullback

Ccore C

N(πCcore) N(πC)

⌟

Example 6.3 (Hom-sets are anima). As discussed previously, if C is a quasicategory, then HomC(x, y) is
an anima.

We want an∞-category of anima. I think, at some point, that I defined the∞-category of∞-categories
explicitly, based on Charles notes. This was not really the nerve of the ordinary category of∞-categories.
For some reason, the nerve isn’t the “right" way to think about these kinds of constructions. This is Write

about N c

one day?
intuitive: an∞-category should express and organize some “homotopical phenomena," so if our input is
an ordinary category C (which has no higher data) then whatever we extract from it (e.g. N(C)) probably
won’t have much good homotopical information.
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So there are two problems: we start with an insufficient amount of data (an ordinary category), and
if we change that (by specifying more data), we need to “upgrade" the nerve N•(−) to account for the
additional data. The homotopy-coherent nerve resolves this; it is some technically-defined functor that
sends simplicially-enriched categories to simplicial sets.

Definition 6.41. The coherent/simplicial/homotopy-coherent nerve is some functor

N c(−) : CatsSet → sSet.

Proposition 6.42 (Fabian’s notes, I.14). If C is a category enriched in Kan complexes, then N c(C) is an
∞-category. Moreover, there is a canonical homotopy equivalence of Kan complexes

HomNc(C)(x, y) ≃ HomC(x, y).

Example 6.4. The ordinary full subcategories Kan, qCat ⊆ sSet are Kan-enriched via

HomKan(X,Y ) = Fun(X,Y ) and HomqCat(X,Y ) = HomsSet(X,Y )core.

The∞-category of anima is the coherent nerve N c(Kan). The∞-category of quasicategories is the coherent
nerve N c(qCat′), where qCat′ is the Kan-enriched category formed by replacing the hom-quasicategories
in qCat with their maximal∞-groupoids.

Example 6.5 (Homotopy hypothesis, Fabian I.20). Let X be a space. The singular complex S•X is an
∞-groupoid. This functor S• is right adjoint to geometric realization. A corollary to inspection of the
skeletal filtration on simplicial sets says that a geometric realization has a canonical CW structure; thus
|−| : sSet→ Top lands in CW. Top, in particular CW, is Kan-enriched via Hom(X,Y ) := Sing•Hom(X,Y ).
We can therefore pass to the simplicial nerve, and our adjunction becomes an equivalence

An := N c(Kan) N c(CW)
|−|

Sing•

That this is an equivalence is Grothendieck’s homotopy hypothesis.
Read
example
N c(Ch(R)),
i.e. nerve
of cate-
gory of
chain
complexes
of R-
modules.
See
Fabian,
I.15(e).
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7 July

7.1 (7/5) Derived∞-categories I

There are a few ways to define, think about, characterize, etc. the derived∞-category of an abelian category.
I suppose it’s the “correct" setting to do homological algebra with complexes modulo quasi-isomorphisms.
In particular, they recover the triangulated structure we use in the ordinary setting for the purposes of
homological algebra. Naturally, they are related to stable∞-categories. I’ll understand this eventually.
Today I’ll go over my takeaways from Achim Krause’s talk about them.

To an abelian category A, we want to associate an∞-category D∞(A) that encodes the homotopy
theory (where quasi’s should be the weak equivalences) of Ch(A).

Definition 7.1. If A is an abelian category, we denote by Ch(A) the category of unbounded chain
complexes in A. Note that for A,B ∈ Ch(A), the differential on B gives rise to a dg structure on
HomCh(A)(A,B), i.e. the structure of a complex of abelian groups. Thus, Ch(A) has a canonical enrichment
over Ch(Z).

There’s latent homotopical data in the structure of the Ch(Z)-enrichment of Ch(A). (In particular,
the Ch(Z)-enrichment encodes the chain-homotopy equivalences.) We have a good way for translating
this into our common language of∞-categories: consider the composite

K : Ch(Z) Ch≥0(Z) sAb Kan.τ≥0 Γ forgor

∼= (II.2)

The forgetful functor lands in Kan because the underlying simplicial set of a simplicial abelian group is
a Kan complex. The functor Γ is one direction of the Dold-Kan correspondence. The functor τ≥0 is the
canonical truncation.8

Proposition 7.3. Each category in Equation (II.2) is monoidal, with monoidal product given by (from left to
right): the ⊗ of chain complexes, the same, pointwise ⊗ of abelian groups, the usual product. (In fact, they
are symmetric monoidal.)

Furthermore, each functor in Equation (II.2) is lax-monoidal. (Note that Γ is not lax-symmetric monoidal,
although its inverse is.)

Thus, hitting hom-objects with K describes a functor

{Ch(Z)-enriched categories} → {Kan-enriched categories}.

And we (vaguely, I have not yet really worked this out) know how to take the latter sort of category and
reformulate it as an∞-category.

Definition 7.4. If A is an abelian category, define its homotopy category as the∞-category

K∞(A) := N c(Ch(A)∆),

where Ch(A)∆ is the simplicial category obtained by applying K above to Hom-objects. Note that this is
in∞-category since K lands in Kan rather than just sSet.

The homotopy category K∞(A) is nice. For example, it is finitely bicomplete. Moreover, for chain
complexes A and B we have by construction

πnHomK∞(A)(A,B) ∼= HnHomCh(A)(A,B).

In particular, π0HomK∞(A)(A,B) consists of chain maps A→ B modulo chain-homotopy equivalence.

Remark 7.5. There is a problem. Although chain-homotopic maps are identified upon passage to K∞(A),
quasi-isomorphisms do not become isomorphisms. For example, the following chain map is a quasi-

8In negative degrees, τ≥0 naively truncates a chain complex. In degree 0, it sends A0 to ker(d1). It leaves positive degrees
unchanged. This has the effect of preserving non-negative homology. This is contrast to the most obvious stupid truncation, which
leaves A0 unchanged. See [?, Section 0118].
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isomorphism but is not invertible in K∞(A).

· · · 0 Z Z 0 · · ·

· · · 0 Z/2 0 · · ·

2

π

We do not beat around the bush: to fix the problem, we just DK-localize it away. Let W be the set of
quasi-isomorphisms of complexes in K∞(A). We define the derived∞-category of the abelian category A
to be the localization

D∞(A) := K∞(A)[W−1].

Write
about
DWyer-
Kan local-
ization,
existence,
examples?

7.2 (7/21) Ambidexterity I

A sheaf on X is called a classical local system if it is locally constant. For X locally connected, we have a
categorical equivalence (the← direction of which is given by taking sections)

{classical local systems on X} ∼= {covering maps p : Y → X}.

Suppose that X is connected (and locally simply connected) and choose a basepoint x0. Given a loop
g ∈ π1(X,x0), the pullback g∗F is constant, hence specifies an isomorphism g∗F0

∼= g∗F1, i.e. an
automorphism of Fx. This is suitably homotopy invariant and compatible with loop concatenation so as
to define a group action π1(X,x0)→ Aut(Fx0

), the monodromy representation of F at x0. If F is a sheaf
of sets, the monodromy representation is a π1(X,x0)-set. If F is a sheaf of complex vector spaces, then
the monodromy representation is a representation π1(X,x0)→ GL(Fx0

) and takes its sheaf of sections.

Proposition 7.6. If X is connected (and locally simply connected),9 then associating to a local system its
monodromy representation defines one way of an equivalence of categories

{classical local systems of C-vector spaces on X} ∼−→ {complex representations π1(X,x0)}.

Remark 7.7. The inverse associates to a representation ρ a sheaf that tautologically has monodromy
representation ρ. Some sources define this directly. I think it is exactly the following construction: given a
representation ρ : π1(X,x0)→ GL(V ), one takes the associated bundle (X̃ × V )/π1(X,x0)→ X

Remark 7.8. If F is a sheaf of sets, then one gets an equivalence between local systems on X and
π1(X,x0)-sets.

Some good links for basics about the above stuff are Wikipedia, these short notes on “local systems and
constructible sheaves" by P. Achar, and Szamuely’s book.

Two observations: (1) if X is not connected, then the “local systems↔ π1 representations" picture gets
awkward,10 and (2) we can generalize our argument that a loop based at x0 determines an automorphism
Fx0

∼−→ Fx0
in a homotopy-invariant manner. By that I mean that the argument works to show paths from

x0 to x1 induce isomorphisms Fx0

∼−→ Fx1
in a functorial, homotopy-invariant manner. The point (2)

actually suggests a more general definition that addresses (1).

Definition 7.9. Let X be a topological space. A local system on X is a functor Π1X → D.11

This recovers the definition as classical local systems in the case that X is nice. (I don’t actually know
what the hypotheses for this are.) That is, for sufficiently nice X, we have an equivalence of categories

{classical local systems on X} ∼−→ Fun(Π1X,Set).

9Maybe you also need Hausdorff, locally path-connected, second countable...
10Since you would want to account for the varying π1 between different connected components, but for an equivalence of some

sort, you would need to pick a basepoint in each component, which you don’t really do?
11Recall that the fundamental groupoid Π1X is the category whose objects are points of X and whose morphisms are homotopy

classes of maps.
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Given a local system F , the associated functor Π1X → Set acts on objects by x 7→ Fx. Morphisms are sent
to their associated monodromy representation.

Anyway, it’s clear where we’re going: we will replace Π1X with its untruncated, derived version
Sing(X) and our target category with some∞-category.

Definition 7.10. Let X denote a Kan complex. An∞-local system valued in C is a functor X → C.

Remark 7.11. Although I’m not interested in it right now, the analogy with classical local systems and
covering maps holds up in the∞-categorical setting. The slogan is that spaces are∞-topoi, and if X is
an∞-topos, then Shv(X ) has a full subcategory of “locally constant sheaves" on X . For X nice,12 these
locally constant sheaves turn out to be equivalent to some∞-topos of the form S/K for some Kan complex
K. If X = Shv(X) for some nice space X, then K = Sing(X). Wow! I’m not actually sure the precise
relation of these locally constant sheaves to local systems in this setting.

The equivalence of classical local systems on X and π1X-representations (which holds for connected
X) says that local systems “are" representation theory (you can recover the representation theory of G by
taking X = BG). In an∞-local system, one has a classical local system (given by truncating SingX to
Π1X), plus higher homotopy-coherent data coming from X. This is probably the easiest step down a road
toward “higher representation theory."

Just as we often do representation theory with nice groups, e.g. G finite, in higher representation
theory we should begin with some finiteness conditions. Our space X (really, its homotopy type) plays the
role of G, so these should be conditions on X (really, on its homotopy groups).13

Definition 7.12 (Various finiteness conditions). Let X denote a space. Let p be a prime and m ∈ Z≥−2.
Say X is...

(1) m-finite if...

• m ≥ −2 and X is contractible; or
• m ≥ −1, the set π0X is finite, and the fibers of ∆ : X 7→ X ×X are all (m− 1)-finite.

(2) π-finite if it is m-finite for some m ≥ −2;

(3) A p-space if all its homotopy groups are p-groups; and

(4) p-finite if it is a π-finite p-space.

Example 7.1. If G is finite, then BG is π-finite. If G is a finite p-group, then BG is p-finite.

Let me wrap up by “doing something" with all this. Here’s something we do in representation theory
and the study of group actions.

Example 7.2 (Representation theory in characteristic zero). Suppose as given a finite group G acting
on an abelian group A. We define the invariants and coinvariants of the G-action as AG := {a : ag =
g for all g ∈ G} and AG := A/{ga− a : a ∈ A, g ∈ G}, respectively. There is a natural norm map

NG : AG → AG

given by m 7→
∑

g gm. (This is a kind of “averaging.") NG is not an isomorphism in general, but it is
if A is a rational vector space (i.e., multiplication by any n is invertible). In this case, the claim is that
the composite AG ↪→ A ↠ AG is an inverse. For this, one shows that the composites both ways are
multiplication by |G|, which is nonzero if A is a Q-vector space. Thus, invariants and coinvariants coincide
in representation theory in characteristic zero.

Remark 7.13. It is clear from the argument in the previous example that if p divides |G|, then NG is not an
isomorphism when A is an Fp-vector space. In particular, if p divides |G|, then NG is not an isomorphism
for representation theory in characteristic p. In the edge case of |G| = pr, we observe something called
unipotence that is important but which I am not focused on right now.

12Here, “nice" is the higher version of “locally simply connected" or something. The precise term from HA is “locally of constant
shape."

13Also, in doing chromatic and whatnot, finiteness conditions abound for other reasons too.
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Suppose that a field k has characteristic zero. As we discussed, classical local systems of k-modules
(i.e., k-vector spaces) over BG are “the same thing" as G-representations over k. Directly above, we said
that given a G-representation G→ GL(V ), the norm NG : VG → V G is an isomorphism. We can ask what
this statement translates to if we identify our representation with a local system. If we write L for that
local system, I think the norm map is recovered as some canonical comparison map colim−→x

Lx → limx Lx,
which is an isomorphism since char(k) is zero.

If k has characteristic p, I also said that the norm is no longer an isomorphism. I’m not sure if
the “classical local systems↔ G-representations over k" correspondence still works. Regardless, its our
definitive model for “higher representation theory" (that is, I’m telling you that∞-local systems are higher
representation theory). And the definition of the comparison map as colim−→x

Lx → limx Lx works for
∞-local systems.

So, now we can ask about how the norm map behaves for various∞-local systems. We should have
an eye toward situations with a notion of “characteristic," since in ordinary representation theory, the
characteristic dictates useful phenomena via the norm. Chromatic homotopy theory strongly suggests
certain examples, wherein the classical theory generalizes in structured but unexpected and interesting
ways.

Consider a G-spectrum rather than a G-abelian group. Fix a prime p. We saw that for a G-abelian
group, the norm NG : AG → AG is an isomorphism in characteristic zero but not p. In chromatic land, to
p we associate the sequence of Morava K-theories K(n) which are “like primes" or which “intermediate
characteristic zero and p."

Two good questions: if the K(n) have “intermediate characteristic,"

(1) Can we do “representation theory of G over these intermediary-characteristic K(n)" and

(2) How does the norm behave in this representation theory?

Not taking this “higher representation theory" perspective, an answer to (2) was proven in 1996 (Clausen
and Akhil have a short proof here):

Theorem 7.14. Let G be a finite group and let X be a K(n)-local spectrum with a G-action (i.e. a functor
BG→ SpK(n)). Then the norm map XhG → XhG is an equivalence in SpK(n).

This is surprising! In the case n = 0, we have K(0) = HQ and we work rationally, in which case the
theorem reduces to knowing that composing NG with XhG → X → XhG is multiplication by |G| which is
invertible (we can divide by |G|). But for n > 0, we have that K(n)∗ ∼= Z/p[vn, v−1

n ] in which p = 0. Thus,
we cannot always “divide by |G|." Yet the theorem persists.

Hopkins-Lurie offer an insightful interpretation of all this. Remember that representation theory of G
over k “is" local systems of k-modules over BG. One thing Hopkins-Lurie show is that we can do “higher
representation theory" of G over K(n), which we understand as∞-local systems on BG of K(n)-modules.
Then a norm map appears and is an isomorphism, as it is the map from Theorem 7.14 (I think). In fact, in
the framework of HL one may take any space X in place of BG.

Theorem 7.15. Let X be a π-finite space and let L be an∞-local system of K(n)-module spectra over X, i.e.
an object of the∞-category Fun(X,ModK(n)). Then there is a canonical “norm" isomorphism

NX : C∗(X;L) ∼−→ C∗(X;L).

Example 7.3. Taking L =the trivial local system, we find that if X is a π-finite space, then K(n)∗X ∼=
K(n)∗X. We think of this as some general form of Poincaré duality. This generalizes work of Greenlees
and Sadofsky, who proved the statement in the case that X = BG in 1996.

HL develop a general framework to understand this. I’ll get to that in a bit.

7.3 (7/25) Ambidexterity II

Continuing from last time. Let me recap for my own sake.
First we talked about some classical phenomena: given a finite group G acting on an abelian group

A, we may form a “norm" map NG : AG → AG whose composition with the canonical AG ↪→ A ↠ AG

is multiplication by |G|, which is invertible if A is a rational vector space (in which case NG exhibits
AG
∼= AG). Then I schizophrenically insisted that since C-representation theory of G is “just" local systems
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of C-modules (⇐⇒ C-vector spaces) over X (one recovers representations of G by taking X = BG), we
should define “higher representation theory" to be the study of∞-local systems.14

That established, I stated our first real result in this philosophy: if X is a π-finite space, then given a
local system L of K(n)-modules on X, there is a “norm" isomorphism15

colim−→x
Lx =: C∗(X;L) C∗(X;L) := limx Lx

∼
NX

This is like the earlier result that NG : AG → AG is an isomorphism if A is a Q-vector space. Ambidexterity
is supposed to give some framework to find and study canonical dualities between colimits and limits like
this (e.g., as we had between G-orbits AG and G-fixed points AG.)

Let me make an educated guess as to how we will move forward and invent context for all this:

(1) We will formulate a “norm" map for any ∞-local system X → C, probably with reasonable
stipulations on X and/or C. This will be a map

colim−→x
Fx → lim

x
Fx.

(2) We will do so in such a way (or perhaps it will pop out from the formalism) that the compo-
sition with the canonical map limx Fx → colim−→x

Fx is an endomorphism that we should call
"multiplication by the cardinality |X|."

(3) We will study when this endomorphism is invertible.

(4) ??? Profit

Let’s get to formalizing things.

Definition 7.16. Let X be a Kan complex and C an ∞-category admitting small limits and colimits.
Denote by δ : C → CX the functor which maps an object C to the constant C-valued local system CX .
Given a local system L ∈ CX , define

C∗(X;L) := colim−→X
Lx and C∗(X;L) := lim

X
Lx.

I’ll call these the coinvariants and invariants of L. By construction, the functors L 7→ C∗(X;L) and
L 7→ C∗(X;L) are left/right adjoint to the constant local system functor δ, respectively. Here’s a diagram
expressing this.

X CX
δ

L7→C∗(X;L)

L7→C∗(X;L)

⊣⊣

Definition 7.17. Let X be a Kan complex and C a category with small limits and colimits. Suppose as given
a natural transformation µ : C∗(X;−)→ C∗(X;−) and a map of Kan complexes f : X → HomC(C,D),
which we identify with its induced morphism CX → DX . Consider the composite

C → C∗(X;CX)
f−→ C∗(X;DX)

µ−→ C∗(X;DX)→ D.

We call this the integral of f with respect to µ and denote it by
∫
X
fdµ.

Remark 7.18. The first map C → C∗(X;CX) is the unit of the adjunction δ ⊣ (L 7→ C∗(X;L)). The last
map is the counit of the other adjunction. Maybe you, as I did, ask why we choose this combination of
(co)units given our adjunctions. The simple answer is that this is the only way to get a map C → D given
µ and f .

Remark 7.19. Since f is a family of things in HomC(C,D), it makes sense that the “integral of f " should
be a particular thing

∫
X
fdµ ∈ HomC(C,D).

14I honestly don’t know if this is the right way to think about all this. Does “higher representation theory" already mean something
definitive?

15This is(?) a more general form of a 1996 result of Greenlees-Sadofsky that exhibits an isomorphism XhG
∼−→ XhG where X is

a K(n)-local spectrum with finite G-action (which maybe reduces to showing that BG exhibits self-dual K(n) (co)homology).
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Recall that the norm NG : AG → AG was given by m 7→
∑

g mg, which we thought of as a kind
of “averaging." Averaging is kind of like integrating. So, how can we use integrals (in the sense defined
above) to find a “canonical" map

colim−→X
Lx → lim

X
Lx?

To do so means to specify a map Lx → Ly for each path x→ y, in a manner functorial in x, y (and higher
coherences?). The idea is to integrate—since we want a map Lx → Ly, we should take C = Lx and
D = Ly. Denoting by Px,y the mapping space HomX(x, y), the system L determines a map ϕx,y : Px,y →
HomC(Lx,Ly). Thus, given x, y and a local system L, a natural transformation µx,y : C∗(Px,y;−) →
C∗(Px,y;−) specifies a map ∫

Px,y

ϕx,y dµx,y ∈ HomC(Lx,Ly).

If µx,y is functorial in x and y, then so is the above integral, whence we get a map NmX(L) : colim−→X
Lx →

limX Lx. This is also functorial in L; we get a natural transformation

NmX : C∗(X;−)→ C∗(X;−).

7.4 (7/30) Ambidexterity III

Given a Kan complex X and an∞-category C, I’ve described a procedure for “integrating maps" f : X →
HomC(C,D) given some µ : C∗(X;−) → C∗(X;−). Using this, I defined a “norm" NmX : C∗(X;−) →
C∗(X;−) given (a functorial family of, for each x, y ∈ X) some µ : C∗(Px,y,−) → C∗(Px,y;−). In
the classical setting wherein a finite G acts on a rational vector space A, we found that the norm is
an isomorphism AG

∼−→ AG since |G| was invertible. We also saw that if X is a π-finite space and
C = {K(n)-module spectra}, then NmX : C∗(X;−) → C∗(X;−) is an equivalence. THis gave us, for
instance, a sort of K(n)-local Poincaré duality K(n)∗X ∼= K(n)∗X. “Ambidexterity" means to describe
daulity phenomena like this in general.

Definition 7.20. Suppose that X is a Kan complex and C ∈ Cat∞. We say that X is C-ambidextrous if

(1) X is n-truncated for some n ≥ −2,

(2) For each pair x, y ∈ X, the path space Px,y is C-ambidextrous, and

(3) NmX : C∗(X;−)→ C∗(X;−) is an equivalence.

If X is C-ambidextrous then we write µX : C∗(X;−)→ C∗(X;−) for the inverse to NmX .

Remark 7.21. Note that if n ≥ −1, then X is n-truncated =⇒ Px,y is (n − 1)-truncated. This makes Prove this
in my
head.

Definition 7.20 an inductive definition.

Remark 7.22. We say X is (−2)-connected if it is contractible. Then C 7→ CX is an equivalence
C→ CX . In that case, it has naturally isomorphic left/right adjoints. So, if X is (−2)-connected, then X is
automatically C-ambidextrous.

Beck-
Chevalley
fibrations?Remark 7.23 (HL p. 91, right before §4.1). C-ambidexterity of X imposes conditions on X and C. It is

generally a finiteness condition on X, e.g. it often occurs that X has finite homotopy groups, analogous
to asking that G be a finite group when we think about G-actions.

More interestingly (to me), it is a general kind of additivity property of C, and results in a canonical
“integration" or “summation" process for diagrams X → C.

At this point, Hopkins-Lurie discuss ambidexterity in the context of Beck-Chevalley fibrations, which I
don’t have the processing power to read right now. I’m going to see if I can just ignore it for a bit.

I’m going to the gym and will think a bit about how to proceed.
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9 September

9.1 (9/15) Semiadditivity I

Some good references are this blog post and this paper, maybe these lecture notes. Parts of my notes here
are just regurgitations of what I find, as usual.

Let’s start somewhere familiar. A preadditive category is a category C with an Ab-enrichment. It is
more or less standard that given any two objects A,B in a preadditive category, the properties of being
their (co)product coincide. In fact, the proof only uses addition, so this is true for any CMon-enriched
category. Maybe one way to understand this is to think that in any CMon-enriched category, there’s a good
way to "add" pairs of objects.

Nailing down what exactly it means for products and coproducts to coincide (i.e., for A,B to "have a
biproduct") is subtle. More subtle than I had realized when I first learned about abelian categories and
"biproducts" a long time ago. Previously, I thought that given A,B ∈ C, their "biproduct" should just be
the name we give to any object that is isomorphic to both their product and coproduct. But the resulting
notion is not unique, not even up to isomorphism. Here’s a definition. Example?

Definition 9.1. Let C be a category with zero morphisms (e.g., a pointed category, or a CMon-enriched
category). Given A,B ∈ C, a biproduct for A and B is an object A⊕B together with maps

A B

A⊕B

A B

iA iB

pA pB

With the property that...

• We have iApA = idA, iBpB = idB , iApB = 0, and iBpA = 0,

• (A⊕B, pA, pB) is a product, and

• (A⊕B, iA, iB) is a coproduct.

This turns out to work. I point that we are crucially relying on a canonical choice of map between any two
objects x→ y: choose the identity if x = y and the zero map otherwise.

Theorem 9.2. Biproducts of two objects are unique up to unique isomorphism.

Theorem 9.3. If C has finite biproducts, then the biproduct extends to a bifunctor C× C→ C.

So in a category C with zero morphisms, a biproduct is an object which coherently satisfies two dual
universal properties, and I’ve likened it to a "sum" of objects. Biproducts may not exist. I’ve told you that
any CMon-enriched category has all finite biproducts. But if we’re going to think of biproducts as a "sum,"
then maybe its natural to have a zero for this "sum," i.e. a zero object. This would, in particular, imply that
zero morphisms exist. So, pointed categories seem like a good starting point to explore this notion of "a
category whose objects we can add."

Definition 9.4. A category C is called semiadditive if it is pointed and admits all finite biproducts.

Remark 9.5. Here’s a harrowing remark. We said a biproduct is a "coherent combination of a product and
a coproduct." And now we’re saying that pointed categories are a good place to study biproducts. But what
is pointedness, i.e. what does it mean to have a zero object? A category C has a zero object precisely when
the limit and colimit of the empty functor ∅→ C exist (i.e., when C has a terminal and initial object) and
the two coincide (i.e., when the unique map ∅→ ∗ is an isomorphism, i.e. when HomC(∗,∅) ̸= ∅). So to
even start thinking about biproducts, we already have some sort of "double universal property" going on:
namely, a coincidence of the limit and colimit of the empty functor. This is equivalent to the existence of
left and right adjoints to the constant functor C→ ∗ and a natural isomorphism between them.
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That formulation of pointedness as a coincidence of left and right adjoints turns out to be a useful
way to approach the notion of semiadditivity because the existence of biproducts can be formulated in the
same fashion.

Proposition 9.6. A category C is pointed if and only if the terminal functor C → ∗ admits naturally
isomorphic left and right adjoints.

Proposition 9.7. Let ∆ : C → C × C denote the diagonal functor. Then C admits finite products (resp.
coproducts) if and only if ∆ admits a right (resp. left) adjoint.

Proposition 9.8 (See this paper). Suppose that ∆ admits naturally isomorphic left and right adjoints, which
we refer to as a single functor ⊕. Consider the following condition.

• The unit idC×C → ∆⊕ of ⊕ ⊣ ∆, which is given by the morphisms (iA, iB) : (A,B) → (A ⊕
B,A ⊕ B), is a section to the counit ∆⊕ → idC×C of ∆ ⊣ ⊕, which is given by the morphisms
(pA, pB) : (A⊕B,A⊕B)→ (A,B).

This condition holds if and only if C admits finite biproducts.

Ok, so we’ve interpreted pointedness and the admittance of biproducts as a sort of duality exhibited
by quite natural functors: the terminal C → ∗ and the diagonal C × C → C. This duality is succinctly
expressed in terms of adjoints. Specifically, this duality amounts to the coincidence of left and right
adjoints, plus some coherence between the evident pairs of (co)units (which degenerated in the case of
C→ ∗). Then semiadditivity translates into two similar duality conditions, one dependent on the other to
make sense.

If you believe semiadditivity is important, then you may ask whether there are even "higher" duality
conditions which C may satisfy, which we might hope are limit-colimit dualities with an interpretation
using adjoints. And if C satisfies these "higher" conditions, then we should obtain some "higher" form of
semiadditivity. The kicker is that semiadditivity is all about monoids, and our line of reasoning will reveal
that "higher semiadditivity" means "higher monoids."

Of course, I’m asking this with a lot of foresight. And of course, the full answer is∞-categorical. But
I hope the take I’ve sketched here provides a decent low-level, 0-categorical entry into the body of ideas I
am trying to understand right now. I hope I can write a fuller such introduction eventually, but glad to
blab it here for now.

9.2 (9/18) Semiadditivity II

Before we get weird—that is, before I talk about infinity categories—I should actually explain why
semiadditive categories are interesting. I did not do that last time, I just basejumped off the hypothetical
"If you believe semiadditivty is important..."

Definition 9.9. Let C be a category with products (resp. coproducts). Given an object c ∈ C, its diagonal
morphism is the arrow ∆c : c→ c× c (resp. its codiagonal is the arrow ∇c : c

∐
c→ c) induced in the left

diagram (resp. right diagram).

c c c
∐

c c

c c× c c c

idc idc
∃!∇c

idc idc∃!∆c

Proposition 9.10 (Possible reference). Let C be a category with coproducts (resp. products) regarded as
a monoidal category under the coproduct (resp. product) bifunctor. Then each object ∈C is a monoid when
equipped with the codiagonal ∇c : c × c → c and the initial map ∅ → c (resp. a comonoid under the
diagonal and terminal map). Furthermore, this monoid (resp. comonoid) structure is commutative (resp.
cocommutative) and unique.

Proof. We will work the coproduct / monoid case.
Uniqueness: given c ∈ C, any unit map for a monoid structure on c must be a morhism ∅→ c, which

is necessarily unique. Similarly, any map m : c
∐

c→ c is induced by two maps x, y : c→ c with idc as a
two-sided inverse, which necessitates x = y = idc. This forces m = ∇c.
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-ativity: the monoidal product is the coproduct, i.e. we are working with a cocartesian symmetric
monoidal category, so the braiding is the identity. This forces commutativity and associativity.

Remark 9.11. It is easy that any morphism f : c → c′ is also a morphism of monoids. Hence, C ∼=
CMon(C) ∼= Mon(C).

Remark 9.12. I believe, but do not know how to prove, the converse: if a category C admits finite
coproducts, then it is semiadditive if and only if CMon(C)→ C is an equivalence. We will see this in much
greater generality later.

Example 9.1. Take C = Mon(Set), which has finite products and coproducts. The × is the cartesian
product and the

∐
is the free product. With respect to ×, the comonoidal product ∆c : c→ c× c is given

by that in Set, namely the diagonal x 7→ (x, x). (To see this, hit ∆c with U : Mon → Set and remember
that it preserves limits.) With respect to

∐
, the monoidal product ∇c : c

∐
c→ c is given by multiplication

of elements with the monoid structure. (Note that although ∇c is commutative by abstract nonsense, this
does not imply that every monoid c is commutative because c

∐
c is not c× c.)

Example 9.2. But if C = CMon(Set), then × and
∐

coincide. Thus, each commutative monoid M is a
categorical monoid and comonoid under the codiagonal and diagonal maps

∇M : M ×M →M and ∆M : M →M ×M.

Furthermore, these structures are unique, and are commutative and cocommutative, respectively.
Say ac-
tual things
about
semiad-
ditive cate-
gories

9.3 (9/24) Just monoids

I want to think about monoids as functors out of span categories, because that seems entertaining and I
haven’t done it yet. Here are some references.

• Dan Freed’s notes here.

• Schewede here, Stable homotopical algebra and Γ-spaces, 1999.

• Akhil’s blog here.

• Did not really use this, but I did find stuff I want to get back to in Barwick’s On the algebraic
K-theory of higher categories, found here, in paritcular §3.

• This MO question.

Here’s an ancient way to think about monoids. Regard FinSet∗ as the category with objects {n+ :=
{0, 1, . . . , n} : n ≥ 0} and with morphisms based functions (those f with f(0) = 0).16 For the purpose of
accessing infinite loop spaces, i.e. E∞-spaces, i.e. homotopy coherent monoids, Segal made systematic use
of Γ:= FinSetop∗ which we now sometimes call Segal’s Γ category. We can get a good demonstration of this
machine by using it to encode just ordinary monoids, so we’ll do that. The idea is that given a set X, a
monoid structure on X is precisely the occurence of X as the image of 1+ for a “nice" functor Γop → Set∗.

Suppose as given a commutative monoid M . Define a functor AM : Γop → Set∗ as follows. On objects,
AM (S) := Set∗(S,M). Next, given a morphism of finite pointed sets f : X → Y , we must define a
"pushforward" f∗ := AM (f) = Set∗(X,M)→ Set∗(Y,M). For this, given pointed θ : X → M we define
f∗θ : Y →M

f∗θ(y) =

{
0 if y = 0,∑

x∈f−1(y) θ(x) otherwise.

In words, for each f : X → Y , the morphism f∗ = AM (f) takes based functions X → M and uses the
monoid structure of M to integrate along the fiber of f , resulting in functions Y →M . Think

about this.Remark 9.13. Is there a way to explain why we make the ad-hoc choice to define f∗θ(y) = 0 if y = 0? It
is obviously necessary that 0 7→ 0, but it’s ugly that in this one case we do not integrate over the fiber. I
think there is a formulation of Γ-sets without basepoints and with partially defined maps, and we handle
partial-definiteness by collapsing stuff to zero. Maybe in that formulation, the definition is more uniform... Ask some-

one about
this.

16So, we are replacing FinSet∗ with a skeleton.
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Proposition 9.14. Given a commutative monoid M , the assignment AM : Γop → Set∗ described above is
functorial. Furthermore, it satisfies the following properties.

(1) AM (∗) = ∗.
(2) AM (1+) ∼= M canonically.

(3) The natural maps17 X ∨ Y → X × Y induce isomorphisms AM (X ∨ Y ) ∼−→ AM (X)× AM (Y ).
Thus, AM takes coproducts to products.

Proof. Associativity and commutativity are necessary for AM to be covariant. Here are two cases to show
this. For convenience, take M = (Z,+).

• Denote by f : 3+ → 3+ and g : 3+ → 2+ the maps (0, 1, 1, 2) and (0, 1, 2, 2), respectively. That
(1 + 2) + 3 = 1 + (2 + 3) exactly expresses AM (g ◦ f) = AM (g) ◦AM (f).

• Denote by t : 2+ → 2+ the twist map (0, 2, 1). That 1 + 2 = 2+ 1 exactly expresses AM (g ◦ f) =
AM (g) ◦AM (f).

This works in general. Probably, you would say that all maps in FinSet∗ are composites of this form and
work off that. Properties (1) and (2) are immediate. I think that (3) is equivalent to the fact that AM

takes coproducts to products.

Consider a functor A : Γop → Set∗. We call it a Γ-set if A(∗) = ∗. We call it special if the natural map
A(S ∨ T )→ A(S)×A(T ) is an isomorphism. Thus, the previous proposition says that if M is an abelian
monoid, then AM is a special Γ-set. Conversely, suppose that F : Γop → Set∗ is a special Γ-set. Consider
the pair

(F0 := F (1+), F (k : 2+ → 1+))

where k is the map (0, 1, 1). Because F is special, F (2+) ∼= F0 × F0, hence F (k) is a map F 2
0 → F0. We

think of F0 as an "underlying set" and F (k) as an "operation." Various commutative diagrams in FinSet∗
imply that that this operation is associative, commutative, and unital. You use F (∗) = ∗ to get the unit
methinks. We may wrap this up into a condition which is sometimes called the Segal condition, which says
that for all n we have F (n+)

∼−→ F (1+)
×n. One allows n = 0, which we interpret as F (∗) ∼= ∗.

All this converges to the following.

Proposition 9.15. The category CMon is equivalent to the category of special Γ-sets, i.e. the full subcategory
of Fun(Γop,Set∗) spanned by functors satisfying the Segal condition.

So we have this categorical perspective on monoids: they are special Γ-sets. Let’s get weirder. We will
use spans. Given a category C, a span from x to y is a pair of arrows x← z → y. If C has pullbacks, then
we define the composite of spans as the pullback along the "inner pair" of morphisms. We get a category
Span(C) of spans in C, having the same objects as C but with spans as morphisms.

Now I will define a functor CMon→ Fun(Span(FinSet),Set).

Definition 9.16. Let M denote an abelian monoid. Define a functor PM : Span(FinSet)→ Set as follows.

• On objects, we define PM ([n]) := M×n.

• On morphisms, say f : [m]→ [n] given by [m]
g←− Z

h−→ [n], we define PM (f) : M×m →M×n to
be (t1, . . . , tn) where ti is given by

ti :=
∑

zj∈h−1(ti)

mg(zj).

Proposition 9.17. The PM : Span(FinSet)→ Set just defined is a functor. Furthermore...

(1) PM preserves products.

(2) PM (∅) = ∗.
17The set-level definition of this map is clear. It is the one induced by the collapse maps X ← X ∨ Y → Y .
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(3) P (∗) = M .

(4) PM (∅ = ∅→ ∗) is the morphism ∗ →M which labels zero.

Proof. Functoriality is probably elementary. Properties (2)-(4) are easy to check. Property (1) I insist is
elementary once you figure out what products in Span(FinSet) are and work out an example. Let me do
both:

• Products in Span(FinSet) are disjoint unions. The morphisms (spans) from a disjoint union to its
constituents is the obvious one.

• Because the product of spans of sets is given by disjoint unions, we immediately have PM (f ×
g) = PM (f)× PM (g). write out

example

Proposition 9.18. The association M 7→ PM extends to a fully-faithful functor CMon ↪→ Fun(Span(Fin),Set)
whose essential image is the full subcategory Fun×(Span(Fin),Set) spanned by product-preserving functors.

Proof. Extending M 7→ PM to a functor is elementary. That this functor is fully-faithful is easy. In light of
the previous proposition, to show that the image is the full subcategory of product-preserving functors,
it suffices to show that any (product-preserving) functor F arises as PM for some M . For this, take
M = F (∗) and µ = F ({1, 2} id←− {1, 2} → ∗). The functoriality of F implies that µ is an associative, unital,
commutative operation on M , and it is clear that PM = F .

Corollary 9.19. We have an equivalence CMon ∼= Fun×(Span(FinSet),Set).

Remark 9.20. How to tie this back to Segal’s special Γ-sets? A small hurdle is that one formulation uses
pointed sets and the other does not. This is a nuisance!!! To start, convince yourself that pointed maps are
essentially the same thing as partially-defined maps. More precisely, Set∗ is equivalent to the category
of sets and partially-defined maps. And we can relate partially-defined maps to spans: a partial map
(S0 ⊆ S, f : S0 → T ) is precisely a restricted span, i.e. a span where the left leg is an inclusion, namely
the span S ←↩ S0 → T . Now we can complete the picture: the inclusion Spanrest(FinSet) ⊆ Span(FinSet)
induces

Fun×(Span(Fin),Set)→ Fun(Spanrest(Fin),Set)

and we can identify the latter with Fun(Γop,Set). The essential image of this restriction is the full
subcategory spanned by those functors satisfying Segal’s condition. What

about the
pointed-
ness of
Set?

Definition 9.21. If C admits finite products, then we define CMon(C):= Fun×(Span(Fin),C).

This general definition lets you do something fun.

Definition 9.22. Suppose that C admits finite products and let M : Span(FinSet)→ C denote a commuta-
tive monoid in C. We say that M is grouplike if the map M2 →M2 given by (a, b) 7→ (a, a+ b) is invertible
i.e., the transformation given by the matrix

(
1 1
0 1

)
, i.e., the map induced by the following span.

• • •

• • • •

Example 9.3.
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10 October

10.1 (10/8) The back and the shoulder joint

It is now properly Autumn (i.e., both temporally and meteorologically) and my client has back pain. Folks
complain that higher categories and homotopy theory are too abstract and inapplicable, so let me include
in my notes something seriously real-life: the anatomy and kinesiology I need to help my client.

The shoulder is a ball-and-socket joint, shallow in comparison to the hip joints. It is comprised of...

• The humerus, clavicle, and scapula bones, which are encasulated by

• Ligaments and capsule, which passively cushion and fasten the humerus’ "ball" (its head) onto
the scapula’s "socket" (its glenoid), which are encapsulated by

• The rotator cuff , four small muscles that stabilizes / secures the humerus to the socket as it
moves,

• The prime movers, by which I mean the larger muscles attached to the humerus and shoulder
joint that move the arm. This includes your lats, traps, deltoids, and pecs.

As you move (or don’t move), two important processes are carried out in your shoulder complex.

• Stabilization: things are pulling the humeral head into the center of the scapular socket. We
classify these forces as either static or dynamic. Static forces arise from structure you cannot
control, e.g. the pull of ligaments.18 Dynamic forces are those you cause / control, e.g. the pull
of your muscles.

• Scapular orientation: things are moving your scapulae so that your humeral joint is positioned
effectively. Many muscles are involved. I’d classify them into two groups, based on their actions:

– The upper back muscles attached to your scapulae (traps, rhomboids, teres major, serratus
anterior) directly move your shoulder blades, and

– The erector spinae muscles stabilize and extend the thoracic spine, positioning and orienting
of the shoulder blades.

What may cause pain at the shoulder joint? If you visualize the shoulder joint as a ball in a socket, you see
that the arm’s range of motion is bounded by the scapular socket. Impingement is when the socket rubs
against (impinges upon) the humeral head, its surrounding ligaments, or the rotator cuff muscles. This is
the most common cause of shoulder pain. So, what causes impingement?

18In some sense, static forces describe your "passive" or "baseline" stability. Double-jointedness is partly a result of weak static
forces on the joints in question.
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• Anatomy: some people have more "hooked" sockets (specifically, the acromion, which is the
"roof" of the socket) or less passive stability.

• Muscular imbalances: a weak or inactive rotator cuff may be overpowered by primary movers,
which can move the arm beyond its appropriate ROM or excessively off-center the humeral
head.

• Mobility limitations: stiff lats, pecs, or erector spinae / thoracic muscles may restrict or skew
movement of the arm and shoulder blade. For example, tight or overdeveloped lats may cause
excessive internal rotation, which may cause impingement when moving the arm overhead,
since the humerus must externally rotate in order to not impinge upon the acromion.

• Coordination problems: movement is a muscular concert. Problems may occur if even one body
part is mistimed or tone deaf. For instance, if we want to push overhead, then we may externally
rotate the humerus, rotate the shoulder blade, and extend the thoracic spine to orient our
shoulder blade "up." This helps us NOT impinge upon the "roof" of the socket. If we cannot
coordinate all these muscle together (e.g., if they are too weak, or one lacks neuromuscular
control) then this coordinated movement falls apart.

I should be able to figure out what is causing my client’s back pain.

10.2 (10/16) Semiadditivity for∞-categories

Ok, now that I have worked out the 1- and 2-categorical details, we can get weird (that is,∞-categorical).
Suppose that C is pointed. We’ve discussed what it means for C to be semiadditive. One characterization
(which I don’t think I mentioned) is the following.

Definition 10.1. A pointed category C is semiadditive if and only if it admits finite products and coproducts
and for every A,B ∈ C, the "identity matrix" morphism A

∐
B → A×B is an isomorphism.

And here is something nice that happens with semiadditive categories, which I somehow forgot to mention
last time.

Proposition 10.2. If C is semiadditive, then it is canonically enriched in CMon, with units the zero morphisms.

Proof. The sum of two parallel arrows f, g : A→ B is the composite A
∆−→ A⊕A

f+g−−−→ B ⊕B
∇−→ B.

Remark 10.3. Recall that we did discuss the following fact: if C admits coproducts, and we consider
C as a monoidal category under

∐
, then each object possesses a unique monoid structure given by

∇X : X
∐

X → X and ∅→ X. Furthermore, it is commutative. You might like to appeal to the general
phenomenon that “the collection of maps into a CMon-ish thing form a CMon-ish thing."19 And indeed, Think

about this
"category
closed
under
Hom(−, X)
for all X."

given parallel f, g : X → Y , there is a composite X → X
∐

X
f
∐

g−−−→ Y
∐

Y
∇Y−−→ Y . But a priori, we have

the two “inclusions" Y → Y
∐

Y but not a “diagonal." Depending on which of the two inclusions you
choose, this composite is more akin to (f, g) 7→ f + 0 or (f, g) 7→ 0 + g. We cannot “really" form f + g.
Neither of those former maps function as a monoidal operation. There is manifestly no two-sided unit.

The definition of semiadditivity makes perfect sense for ∞-categories. In this case, the previous
proposition translates to the following.

Proposition 10.4. Let C be a semiadditive∞-category. Then for every X,Y ∈ C, the set π0MapC(X,Y ) has
a canonical commutative monoid structure.

The homotopy theorists erases the π0 symbol and asks what you get. The answer is E∞-spaces.

19This is true in many cases: it is true for ordinary abelian monoids, it is true for the category of functors from any category to a
semiadditive one, . . .
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10.3 (10/19) Higher semiadditivity: a first take

From last time: an ordinary semiadditive category has a canonical CMon-enrichment. This is true also
for the π0 of the mapping space of a semiadditive ∞-category. In fact, for a semiadditive ∞-category,
the ordinary phenomenon lifts in the most satisfying way: its mapping spaces are homotopy monoids, i.e.
E∞-spaces.

As part of our ongoing campaign to subjugate chromatic homotopy theory, Hopkins-Lurie take very
seriously the following observation:

Observation 10.5. A bicomplete∞-category C is semiadditive if and only if (I) it is pointed and (II) the
canonical X

∐
Y → X × Y is an isomorphism. Notice that...

• Property (I)⇐⇒ the limit and colimit of the empty functor ∅→ C exist (equivalently, C has an
initial and terminal object) and there exists a map ∗ = colim−→→ lim = ∅, which is necessarily
unique and an isomorphism if it exists.

• Property (II) is the same condition except we consider every functor {• •} → C, and we ask
that the “canonical" map ϕ : colim−→→ lim is an isomorphism. Also, see that the definition of ϕ
requires Property (I), for recall that it is the “identity matrix," which requires a zero map. By
“identity matrix," we mean it is the induced map in the following diagram.

X X
∐

Y Y

≈
(
idX 0
0 idY

)

X X × Y Y

idX idY

0 0

ϕ

I encourage the reader to squint and see the silhouette of an inductive definition. If you can manage
that, you are probably Jacob Lurie or Mike Hopkins. The rest of us have ground to cover. Let me state a
informative "toy example" then outline my thought process as I explain the generalization to myself.

Example 10.1. If a finite group G acts on a rational vector space A, then the norm map NA : AG → AG

is an isomorphism. We can rephrase this categorically: our group action is equivalent to a functor
F : BG→ VectQ and our norm map is an isomorphism NA : colim−→F → limF . We can explicitly describe
these things: F is the functor ∗ 7→ A and g 7→ (the action of g on A) and NA is the map a 7→

∑
G ga.

OK, that example did not accomplish what I wanted it to. (I was hoping NA would have a nice matrix
form, but I don’t think it does in general.) Anyway, here’s a stream of consciousness: Property (I) asks that
the empty functor’s limit and colimit are canonically isomorphic. Property (II) asks for a similar duality
between every product and coproduct pair, i.e., it asks for binary biproducts, and thus finite biproducts. In
which sense, (II) sort of asks for finite families of objects (0-types...) to have a "sum." And in the example,
the norm NA exhibits a duality between a BG-indexed family’s limit and colimit, in which sense we could
"integrate" maps BG→ VectQ. I point out that BG’s are just (connected) 1-types, and in our case π1 was
finite since we assumed G was finite.

Definition 10.6. An∞-category C with small colimits is called m-semiadditive if every finite m-type X is
C-ambidextrous.

Remark 10.7. Thus, in the above observation, C would be 0-semiadditive. Note that the "definition" of
semiadditive used in that observation is equivalent to the definition just given, see HL Prop. 4.4.9.

10.4 (10/21) Higher monoids via of finite spaces

I can continue writing now that I am out of the hell that is applying to the NSF GRFP. As of last time, we
saw ordinary semiadditivity, it’s direct generalization to∞-categories which we called 0-semiadditivity,
and then m-semiadditivity for all m ≥ −2.
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In the ordinary case, we saw that if C admits coproducts, then semiadditivity was equivalent to
CMon(C)→ C being an equivalence. We also saw the nice property that hom-sets in C were canonically
commutative monoids.

Now you consider 0-semiadditivity in the∞-categorical case. You become pensive. Reflective. It
is clear that if C is 0-semiadditive, then π0Map(X,Y ) is canonically an abelian monoid. And I told you
that Map(X,Y ) is an E∞-space. So, analogous to the ordinary case, is CMon(C) → C an equivalence? Easy proof

of this?Does this characterize the 0-semiadditivity of C? Then what about m-semiadditivity, what replaces the
E∞-spaces?

It turns out that we are seeing the first striation of a general phenomenon occuring across m. This
is where Segal’s infinite loop space machine comes in handy. Recall that CMon(C) consists of special
Γ-objects, which are equivalent to product-preserving functors Span(FinSet) → C. The point of Segal’s
machine was to be able to say that a homotopy commutative monoid, i.e. an E∞-space, is the same thing
as a product-preserving functor Span(FinSet)→ Spaces. Using this perspective, we can ambitiously define
an m-commutative monoid in C to be a nice functor Span(m-finite spaces) → C. Here, “nice" should be
some higher version of the Segal condition. These form a category we write CMonm(C), and everything
above generalizes: a category C is m-semiadditive⇐⇒ the functor CMonm(C)→ C is an equivalence, and
an m-semiadditive category is canonically enriched in CMonm(Spaces).

Definition 10.8. We denote by Spacesmn the∞-category whose objects are the n-finite spaces and whose
morphisms are spans such that the left leg is m-truncated.

Definition 10.9. Let C be an∞-category admitting all Km-indexed limits. A m-commutative monoid in C
is a functor F : Spacesm−1

m → C such that for every X ∈ Spacesm−1
m , the family of maps {(ix)∗ : F (X)→

F (∗)}x∈X exhibits F (X) as the limit of the constant X-indexed diagram to F (∗).

Example 10.2. Take m = −1. A space is (−1)-finite iff it empty or a singleton, and a map is always
(−2)-connected, hence Spaces−2

−1 = Spaces−1 is the∞-category with two objects and a unique non-identity
morphism ∅ → ∗. If C is an∞-category admitting K−1-limits (which amounts to admitting the empty
limit and hence a final object ∗) then we may ask about (−1)-monoids M : Spaces−1 → C. Such a thing
amounts to a choice of morphism M(∅)→ M(∗) with the property that M(∅)→ M(∗) exhibits M(∅)
as a limit over the constant functor Spaces−1 7→M(∗), which precisely says that M(∅) is a final object.
Hence, a (−1)-commutative monoid M in C is an arrow A → B such that A is final. We can fix a final
object and identify CMon−1(C) with C∗/, the∞-category of pointed objects in C.

Example 10.3. Take m = 0. A space is 0-finite iff it is finite and discrete, and a map is (−1)-finite iff its
fibers are all empty or contractible, hence iff it is an injection. Thus Spaces−1

0 = NSpanrest(FinSet), the
category of spans of finite sets with one leg an injection. A category C admits K0-limits iff it admits finite
products. A 0-monoid M : Spaces−1

0 → C is characterized by the property that for each finite set n, M(n)
is the limit of the constant functor n 7→M(∗), which I think of as saying M(n) ∼= M(∗)n. We can identify
Spanrest(FinSet) with Γop, and this property says that the resulting functor M : Γop → C satisfies Segal’s
condition. Leaving some details unchecked, we find that M is precisely an E∞-monoid in C.

Example 10.4. I am still not sure how to say concrete things about higher monoids.

On the to-do list:

1. Figure out how to say something about a higher monoid
2. Figure out the basic, technical properties of Spacesnm that let us make basic proofs
3. Figure out what higher monoids are actually good for; modes?
4. Move on and think about semiadditivity and height; maybe higher monoids will reappear?

10.5 (10/24) How to feel a higher monoid

From the description of a monoid M as a product-preserving functor out of Span(FinSet), I can extract a
“concrete description" of M : the zero object ∗ → M , the product operation M2 → M , and the various
properties they satisfy. We want a similar concrete description of higher monoids. In what follows, let
F : Spacesm−1

m → Spaces denote an m-commutative monoid in Spaces, and write M := F (∗).
For this purpose, let me make some terminology. Suppose as given a morphism h ∈ Spacesm−1

m , thus
a span X ← Z → Y of π-finite and m-truncated spaces whose left leg is (m− 1)-truncated. Say h is a lid
(resp. a rid) if its left (resp. right) leg is the identity.

First we think about rids. An (m− 1)-truncated map f : Y → X is the same thing as a rid f̂ : X → Y .
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• For F to be an m-commutative monoid, it must be that given a space X, the family {̂ix :
F (X) → M}x∈X exhibits F (X) as the limit of the constant functor X 7→ M . Thus, F (X) ∼=
MapSpaces(X,M). Why?

• Do rids see more about F (X)? Suppose as given any old (m− 1)-truncated map f : X → Y . We
get a map F (f̂) : Map(Y,M)→ Map(X,M). But note that in Spacesm−1

m , we have îx ◦ f̂ = îf(x).
Hitting this with F , we find that F (f̂) is just restriction along f . Nothing to see here.

Next, we think about lids. Lids are simpler: a lid g : X → Y is just an m-truncated map g : X → Y
of π-finite spaces. (Hence simpler, in the sense that there is no contravariance nor (m− 1)-truncatedness.)
Since F is an m-commutative monoid, we can identify F (X) ∼= Map(X,M) and get a map g∗:= F (g) :
Map(X,M)→ Map(Y,M). Now consider the following commutative diagram in Spacesm−1

m .

X Xy

Y y

g

îy

îXy

py

Here, Xy is the homotopy fiber of g above y. Given ϕ ∈ Map(X,M), this square tells us that

g∗ϕ ∈ Map(Y,M) is the map y 7→ (py)∗(ϕ|Xy
) ∈M.

We should think of the restriction ϕ|Xy as not varying too remarkably across y. (Maybe this is not correct.
But we have some control over it, at least in the case of fibrations. Also, it is independent of F .) On the
other hand, the action by projections (e.g., (py)∗) are totally native to the monoid F . Hence, the actions
p∗ by projection maps p : X → ∗ constitute structure of F . Such an action is a map p∗ : Map(X,M)→M ,
and we have an action for each m-truncated space X. You may say that the structure of actions by
projections p∗ is an “integration procedure" which associates to each m-truncated X-family of points
ϕ : X → M a new point p∗(ϕ) ∈ M . Furthermore, consider a fibration X → Y and a map f : X → M .
We may form

∫
X
f ∈ M . But since X → Y is a fibration, we get a map Map(∗, Y ) → Map(Xy, X), and Do we?

we can postcompose maps in the latter with f and integrate. Altogether this describes a point
∫
y

∫
Xy

f . I
think that the above commutative square relates these two integrals, which we christen a “Fubini-type
relation." This relation is a path in M?

10.6 (10/26) Categorical properties of spans of finite spaces

The property of m-finiteness is closed under pullbacks, so Spacesm has pullbacks and these are computed
in Spaces. In fact, the following is true.

Proposition 10.10 (Lemma 2.9). Spacesn admits Kn-colimits and those are preserved and detected by
Spacesn ↪→ Spaces.

Proof. In general, fully-faithful functors reflect limits and colimits, hence Spacesn ↪→ Spaces does. That is,
if a cone in Spacesn is a (co)limit in Spaces, then it is a (co)limit in Spacesn.

Now, we can show that Spacesn admits Kn-colimits and Spacesn ↪→ Spaces preserves them by proving
that n-finiteness is closed under Kn-colimits in Spaces. (Reflectiveness is necessary here.) That is, it suffices
to prove that if X is n-finite and ϕ : X → Spaces is such that ϕ(x) is always n-finite, then colim−→(ϕ) is
n-finite. For this, consider that ϕ classifies some left Kan fibration p : Eϕ → X. Since X is a Kan complex, Ask

Charles
about this.

so is Eϕ, and p is a Kan fibration. The essential detail is that Eϕ presents the colimit of ϕ, and by the long
exact sequence of a Kan fibration, that X is n-finite =⇒ Eϕ is n-finite.

We also
need to
know that
the fibers
of p are n-
finite. Why
is this the
case?

Proposition 10.11 (Lemma 2.11). Suppose that D admits Kn-colimits and let F : Spacesn → D be any
functor. Then F preserves Kn-colimits⇐⇒ for every X ∈ Spacesn, the family {F (∗)→ F (X)}x∈X exhibits
F (X) as the colimit of the constant F (∗)-valued functor colim−→(X → D).

The previous lemma says that F : Spacesn → D preserves Kn-colimits⇐⇒ it preserves the constant
Kn-colimits with value ∗ ∈ Spacesn. I would like to review the proof of this eventually. In particular, I
would like to think about why this is true in the n = 0 case. Maybe it’s intuitive in the ordinary case. In
any case, this is a useful lemma.
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Proposition 10.12. The inclusion Spacesn ↪→ Spacesmn preserves Kn-colimits.

Corollary 10.13. A functor F : Spacesmn → D preserves Kn-colimits⇐⇒ its restriction F : Spacesn → D
preserves Kn-colimits.

Proof. The =⇒ direction is obvious. For the ⇐= direction, suppose that the restriction preserves Kn-
colimits. For some reason, for every Kan complex X, every diagram X → Spacesmn arises from a diagram
X → Spacesn, whatever that means, and F preserves Kn-colimits of the latter kind.

Now we think about monoidal structure on Spacesmn . The Cartesian monoidal structure on Spacesn
induces a symmetric monoidal structure on Spacesmn . On objects, it is given by the Cartesian product of
spaces. On morphisms, it is given by the Cartesian product of spans. This is not Cartesian (is there a
Cartesian monoidal product on these spans?)

Proposition 10.14 (Cor. 2.17). The symmetric monoidal product on Spacesmn preserves Kn-colimits in each
variable seperately.

Proof. Consider the following commutative diagram.

S × S Sn × Sn Sm
n × Sm

n

S Sn Sm
n

× × ×

Where × denotes the Cartesian product on Spaces and the induced symmetric monoidal product on
Spacesmn . The inclusion Spacesn ↪→ Spaces preserves Kn-colimits, as does the Cartesian product of spaces
in each variable; hence the left-down composite does too. Since Spacesn ↪→ Spaces preserves Kn-colimits,
we conclude that the Cartesian product on Spacesn preserves Kn-colimits in each variable seperately.
We just obtained that Spacesn ↪→ Spacesmn preserves Kn-colimits, and furthermore any X → Spacesmn
factors through Spacesn ↪→ Spacesmn , so the colimit of X → Sm

n is computed in Sn. This implies that
× : Sm

n × Sm
n → Sm

n preserves Kn-colimits.

The∞-category of small∞-categories admitting Kn-colimits with morphisms the Kn-colimit pre-
serving functors gets a symmetric monoidal product ⊗Kn . As a tensor product, given C,D ∈ CatKn , there
is a canonical map C ×D → C ⊗Kn

D with the universal property that restriction

FunKn
(C ⊗Kn

D,E)→ Fun(C ×D,E)

is fully-faithful with image the full subcategory spanned by functors C ×D → E preserving Kn-colimits
in each variable seperately. We just saw that the Spacesnm has a symmetric monoidal product preserving
Kn-colimits in each variable. Hence, the commutative algebras in CatKn are symmetric monoidal ∞-
categories admitting Kn-colimits and whose products preserve them in each variable separately. In
particular, Spacesmn is a commutative algebra in CatKm

.

10.7 (10/28) Baby norms

The preprint for BHLS constructing counterexamples to the telescope conjecture came out Friday, and
there was a conference about it Saturday (yesterday). I want to understand what they did, and (not
coincidentally) ambidexterity and semiadditivity fit into the story. Right now I’ll try to understand
cyclotomic spectra, starting with some discussion of norm maps and the Tate construction. Some of this
will be a repeat of stuff from earlier. References include

• HA §6.1.6.

• Nikolaus-Scholze, lectures on TCH.

Definition 10.15. Let C be an∞-category and consider a map f : X → Y of Kan complexes. Restriction
defines a pullback functor f∗: Hom(Y,C) → Hom(X,C). We define the left and right Kan extensions as
the left and right adjoints f!⊣ f∗ ⊣f∗, respectively. (If they exist, these adjoints are Kan extensions by
Corollary 030B.)
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Example 10.5. Let C be an∞-category and G a group. An object with G-action is a functor F : BG→ C.20

If C admits all BG-colimits, we define the homotopy orbits functor (−)hG by F 7→ colim−→BG
F . If C admits

all BG-limits, we define the homotopy fixed points functor (−)hG by F 7→ limBG F . The functors (−)hG
and (−)hG occur as f! and f∗ when f is the projection BG→ ∗.

Construction 10.16 (The norm induced by f). Let f : X → Y be a map of Kan complexes. The diagonal
map δ : X → X ×Y X is the map induced by the identities idX . Suppose we are given an equivalence
Nmδ : δ! → δ∗ of the left and right adjoints to δ∗. We then may form the composite

p∗0
unit of δ∗⊣δ∗−−−−−−−−→ δ∗δ

∗p∗0
∼= δ∗

Nm−1
δ∼= δ! ∼= δ!δ

∗p∗1
counit of δ!⊣δ∗−−−−−−−−−→ p∗1.

Where p0, p1 are the projections X×Y X ⇒ X. By an adjunction, this is equivalent to a map idCX → p0∗p
∗
1.

We may consider the composite

f∗f∗
counit of f∗⊣f∗−−−−−−−−−→ idCX → p0∗p

∗
1.

By abstract nonsense [HA, 6.1.6.3], this is an equivalence f∗f∗ ∼= p0∗p
∗
1. Hence, we have a map idCX →

f∗f∗, and by an adjunction we get a map f! → f∗ in Fun(CX ,C). We call this the norm map induced by f .

Here are some questions.

(I) What conditions on f and C beget the existence and equivalence of δ! and δ∗? Furthermore,
what begets the existence of f! and f∗, hence Nmf?

(II) What conditions on f and C imply the norm induced by f is an equivalence?

Proposition 10.17 (Answer to I). The map f is (−1)-truncated⇐⇒ δ is (−2)-truncated, i.e. is an equivalence,
in which case δ! and δ∗ exist and are homotopy inverses to δ∗. This begets a canonical equivalence Nmδ : δ! ∼= δ∗.
If in addition C has an initial and final object, then f! and f∗ exist, hence Nmf exists.

Proposition 10.18 (Answer to II). If f is (−1)-truncated and C is pointed21, then Nmf : f! → f∗ is an
equivalence.

Remark 10.19. The previous proposition actually arises from a close relationship between the pointedness
of C and the fact that all its (−1)-truncated norms are equivalences. To be precise, suppose that C has an
initial and terminal object. Then there exists a map ∗ → ∅ (i.e., C is pointed)⇐⇒ the induced norm Nmf

is an equivalence for all (−1)-truncated f [HA, 6.1.6.7].

Now suppose that C is pointed. What if f is 0-truncated? In this case δ is (−1)-truncated, hence the
previous propositions say that Nmδ : δ! → δ∗ exists and is an equivalence. Now, in a fashion analogous to
the above propositions, we wonder what is necessary for f!, f∗ to exist, and for Nmf to be an equivalence.
When we assumed f was (−1)-truncated, we got f! and f∗ by assuming that C had initial/terminal objects,
and I think this arises from some construction taking the (co)limit over fibers, which by assumption were
empty or contractible, hence the assumption. We can do something similar here, where this time fibers Figure this

out.are not (−1)-truncated but 0-truncated, and so we should ask that C admits (co)products. But maybe this
is a strong condition, so let’s instead ask that f is 0-finite, so we only need C to admit finite (co)products.
Then if our analogy holds water, f! and f∗ should exist as soon as C admits finite (co)products, and the
coincidence of (co)products should imply that Nmf is an equivalence.

Proposition 10.20 (HA, 6.1.6.12). Suppose that C is pointed and admits finite (co)products. If f is a 0-finite
map, then f∗ admits left and right adjoints f!, f∗. Furthermore, TFAE.

1. For every 0-finite map f : X → Y , the induced norm Nmf : f! → f∗ is an equivalence.

2. C is 0-semiadditive. In other words, finite products and coproducts coincide in a canonical manner:
for every finite set S and functor F : S → C, the map colim−→S

F → limS F determined by the
“identity matrix"22 is an equivalence.

20I want to also call these G-objects.
21I.e., (−1)-semiaddtive.
22That would be the collection of maps {ϕij : F (si)→ F (sj)}S×S given by ϕij = δij .
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10.8 (10/31) Kan extensions

Last time, we got a headache thinking about surmounting hypotheticals. Specifically, given a map
f : X → Y and a category C, we...

(I) May form the diagonal δ : X → X ×Y X and...

(II) Ask when δ∗ : CX×Y X → CX admits left and right adjoints δ!, δ∗. When they exist, we may ask
when there exists an equivalence Nmδ : δ! ∼= δ∗. Then we...

(III) Ask when f∗ : CX×Y X → CX admits left and right adjoints f!, f∗. When they exist and the items
in (II) exist, we may construct a comparison Nmf : f! → f∗ and ask when it is an equivalence.

Given that we are asking about adjoints to pullbacks, we expect Kan extensions to feature. Last time, I
tried to be slightly more precise about this, and said something like “if f∗ has left/right adjoints, then
they are Kan extensions and may be computed by taking co/limits over the fibers of f ." This suggests
conditions on f and C necessary for the adjoints δ!, δ∗, f!, f∗ to exist and coincide: we need C to have those
(co)limits in the first place, i.e. those indexed by the fibers of f . This gives existence, somehow by taking
fiberwise (co)limits, which gives left/right Kan extensions. Then coincidence of these (co)limits implies
coincidence of these left/right Kan extensions.

Asking for existence and coincidence of (co)limits over all fibers is a big ask. So, we first considered
(−1)-truncated f . In this case, δ is (−2)-truncated (an equivalence) so that δ! ∼= δ∗ tautologically. Hence,
we are only left to worry about the existence and equivalence of f!, f∗. Our above spiel says that this
concerns (co)limits over the fibers of f , which are ∅ or ∗. The limit/colimit of ∅→ C is an initial/terminal
object, and the (co)limit of any c : ∗ → C is just c. Hence, all (co)limits indexed by fibers of f exist⇐⇒
C has an initial and terminal object, in which case f!, f∗ exist. Our above spiel says that in order for
Nmf : f! → f∗ to be an equivalence, we need these (co)limits to coincide, thus C is pointed =⇒ Nmf is
an equivalence.

Next, suppose as given a 0-finite map f . We must again check (I) and then (II). But note that the
truncation order of δ is generally one less than that of f , so we can do something inductive: if we assume
C is pointed, then the above =⇒δ!, δ∗ exist and Nmδ is an equivalence, so (I) is answered and we can ask
(II). By the orange reasoning, f!, f∗ should exist if C admits finite (co)products, since those are (co)limits
over diagrams indexed by the spaces which can arise as fibers of f . Furthermore, Nmf should be an
equivalence once finite (co)products coincide in C. (This is why we asked f to be 0-finite rather than just
truncated: if it were just truncated, we would want countable (co)products to coincide, but that is quite
strong.) We saw all this was true.

OK, above was a rehash of last time. The explanation I tried to give is powered by the orange
statement. I would like to flesh out that statement.
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11 November

11.1 (11/2) Algebraic theories and their models

A central problem in homotopy theory is what I will call the information crisis: properly homotopy-invariant
structures consist of too much data to handle “traditionally." Given a ring R, we naturally think of R as a
set with distinguished elements 0, 1 and compatible operations +,×. But given an E∞-ring R, you can
surely write down the diagrams for the distinguished elements and operations, and you may understand
how these pieces should fit together, but it takes an infinite amount of extra data (higher homotopies) to
actually fit them together. For this reason, it is hard to work with R as we would an ordinary ring.

We want to express these structures in a more convenient form. One helful idea is that we can
think of an “algebraic structure" as some “instantiation" of fixed relations and rules, and we should try
to rigorously (I) “isolate" those relations and rules and (II) concisely express and study how they are
“instantiated." This idea is not precise and can be realized in different ways. Operads are one gadget which
accomplishes this. I have already talked about those at length. Today, I want to think about another (more
general and concise) approach using Lawvere theories, which are also called algebraic theories I think.
Before trying to go homotopy theory, we can think about algebraic theories in the context of ordinary
algebra.

Lawvere theories are old, just a bit older than monads (Lawvere’s thesis is dated 1963). They might be
the first example of the idea that we can model things with structure and properties as structure-preserving
functors F : C→ D. This philosophy is ubiquitous in category theory nowadays.

Definition 11.1. A category L is called a Lawvere theory if L admits finite products and there exists an
object x ∈ L such that every other object y ∈ L is isomorphic to some cartesian power y ∼= xn.

Definition 11.2. Let L denote a Lawvere theory and C a category with finite products. A model for L, also
called a L-algebra, is a product-preserving functor L→ C.

Example 11.1 (Lawvere theory of groups). Define Lgrp:= fgFreeGpop. Each object is isomorphic to
some F (n). Furthermore, Lgrp has coproducts since fgFreeGp has products. (In fact, we know that
F (m)⊕ F (n) ∼= F (m+ n).) Thus, Lgrp is a Lawvere theory.

Groups are Lgrp-algebras. To see this, fix a group G. Consider the functor Lgrp ↪→ Gpop → Set
given by F (n) 7→ UHomGp(F (n), G). This functor is product-preserving, since the inclusions of the full
subcategory are, as well as the contravariant Hom. SO this defines a model for Lgrp.

Lgrp-algebras are groups. To see this, consider a product-preserving functor T : Lgrp → Set. Here’s
how this works.23

• We get a set G := T (F (1)).

• Next, we want an operation m : G2 → G. Since T preserves products, this amounts to a
morphism F (1) → F (2). For this, choose the morphism x 7→ ab, where x and a, b are the
generators of F (1) and F (2).

• The zero element ∗ → G arises from the unique morphism F (1) → F (0) = ∗. The inversion
G→ G arises from x 7→ −x−1.

I think the associativity, identity, and inverse equations hold because they hold for the F (n)’s. You can
check that Lgrp-algebra morphisms are precisely group homomorphisms, hence all the above describes an
equivalence

AlgLgrp
∼= Gp.

Remark 11.3. It happens generally that if L is a Lawvere theory, then L is equivalent to the full subcategory
spanned by the free L-algebras on finitely many generators. (Is this true precisely as stated? I think so. It’s
true for∞-categories.)

Example 11.2. We can also ask for a Lawvere theory Lset whose models are sets. Sets have no operations.
All a set S has is elements, which amount to a maps ∗ → S, one for each element. Writing [n] := {0, . . . , n},
you may feel that Lset should be the category generated by the projections k : [n]→ [1] for each n and

23Andrej Bauer gives another, more elementary explanation of all this here.
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0 ≤ k ≤ n. (These “pick out" the element k.) That was a good feeling, and a valid one, for indeed those
morphisms generate FinSetop and we have

Lset
∼= FinSetop.

A multisorted theory is an annoying name for a natural object. Namely, it is like an algebraic theory,
except for algebraic gadgets with ≥ 1 underlying sets.

Definition 11.4. A multisorted algebraic theory is a category C with finite products and a chosen set
S ⊆ Ob(C) such that every object is isomorphic to a finite product of objects in S.

Something something something about finitary vs. infinitary algebraic theories. I want to make this
stuff homotopical. For this purpose, do we care about finitary vs. infinitary, since homotopical structures
have a lot more pieces of data (infinitely more)? Think

about this.

11.2 (11/4) Recap, why algebraic theories, rigs, spans?

Let me outline my thoughts the last few days and try to recall why I was thinking about algebraic theories,
since I sort of forgot.

(1) Last month I started thinking about the relationship between semiadditivity and monoids, and
whether we can make some analogy

commutative monoids : semiadditivity :: commutative rigs : ???

(2) A rig is a ring without inverses. To make sense of the above analogy, I wanted a good “perspective"
of rigs. In the ordinary case, we may define CRig := CMon(CMon(Set)), keeping in mind that
the first and second CMon are taken with respect to × and ⊗Z, respectively.24

(3) This suggests a detail toward answering (1). If C is pointed and admits small products, then it is
semiadditive iff CMon(C)→ C is an equivalence.25 In analogy, perhaps we should ask: given C
with finite products and zero, when is CRig(C)→ C an equivalence?

(4) The above (3) generates some thoughts. Should we assume C is pointed with finite products?
I think the assumption of finite products is necessary since it lets us form CMon(C). But
pointedness I am not sure about. For CMon’s, pointedness yields the additive identity, and
biproducts yields the sum. But for CRig’s, we want + and ×, and separate units for them. So
perhaps C should admit finite products and coproducts, encoding the sum and multiplication, as
well as initial and terminal objects, encoding the additive and multiplicative identities. Does
this work out?

(5) In any case, the stuff above is all some sort of abstract, meta investigation of algebraic structures
(be it structures on objects in a category, such as commutative monoid objects, or structures on
categories, for instance semiadditivity). I figure it may help to have a language for studying this
stuff. That is why I am thinking about Lawvere theories. (I’ve also just heard of them before and
wanted to know what they were.) Maybe modes... An example question I have is, how can we
compare the monoidal structures on a given category? In our case, if we assume C admits finite
products, we get a diagram

CMon(D,×) D := CMon(C,×) C

CMon(D,⊗)

U∼=

U

24Note that CMon(Set) admits (co)products. Thus, we may also have formed CMon(CMon) with respect to the cartesian or
cocartesian structures. But we know two things: (I) the finite products and coproducts coincide in CMon, and (II) in any cocartesian
monoidal (C, ·), each object has a unique monoid structure, and it is, in fact, commutative, and hence the forgetful CMon(C)→ C
is an equivalence. Then in our case, if we take the (co)cartesian structure on CMon, then CMon(CMon) is not interesting: it is just
CMon!

25In case you were wondering: once we assume C has products and zero, semiadditivity amounts to the canonical maps
X → X × Y ← Y exhibiting X × Y as a coproduct.
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With the aim of studying this diagram, maybe we should treat CMon(−,−) as a functor? Or at
least, we should systematically study the monoidal structures on a category this way. But this
requires a formalism for doing so.

(6) And let’s not forget about spans. We may, first of all, identify CMon(C) ∼= Fun×(Span(Fin),C).
Since CRig is formed as CMon’s under the tensor product, we cannot iterate this “monoids are
functors out of spans" construction, but I think there is something to be said. Not sure what yet.
Is there a Span-ish description of commutative monoids with respect to tensor products? Can
this, for instance, help us understand the above diagram?

(7) I’ve also had a lingering question which may explain or be explained by the above. That is,
what’s the deal with the Span construction? Why do spans really show up? I can (and did earlier
in these notes) explain how to pivot from special Γ-objects to Fun×(Span(Fin),−), but I hope
for a more natural appearance of spans. I have something in mind, but I can’t write it out yet.
An example question is, given a Lawvere theory T , what does the Lawvere theory Span(T op)
model? (That is a Lawvere theory, right? And the op should be there, right?)26

Some references I have not read yet are Gepner-Groth-Nikolaus, Haugseng, Elmanto-Haugseng, Cranch,
Berman, ... Also, here’s a quote by Lawvere in (an anniversary commentary on?) his thesis, which can be
found here:

Algebras (and other structures, models, etc.) are actually functors to a background
category from a category which abstractly concentrates the essence of a certain general
concept of algebra, and indeed homomorphisms are nothing but natural transformations
between such functors. Categories of algebras are very special, and explicit axiomatic
characterizations of them can be found, thus providing a general guide to the special
features of construction in algebra... The tools implicit [here] constitute a “universal
algebra” which should not only be polished for its own sake but more importantly should
be applied both to constructing more pedagogically effective unifications of ongoing
developments of classical algebra, and to guiding of future mathematical research.

11.3 (11/6) Spans

Last time, I did some review and asked the question “if we hit Lawvere theories with spans, what happens?"
I was motivated to ask this question by the example of FinSet: recall that FinSetop classifies sets and
Span(FinSet) classifies commutative monoids. There are many other examples. I want to think more about
this, but first I want to think a bit harder about spans, and get some basic details sorted out.

An essential detail is that spans are naturally 2-categorical. I knew this before, but honestly I do not think
about 2-categories, and I thought I could ignore this detail about spans. This was wrong, for reasons I will
think about and explain later.

Definition 11.5. A strict 2-category is a category enriched in Cat. A weak 2-category is a category “weakly
enriched" in Cat, in the sense that it has...

• Objects,

• Each pair of objects has a category of morphisms (whose 0-cells are morphisms and whose
1-cells are 2-morphisms),

• For each pair of objects, unitor natural isomorphisms, and

• For each quadruple of objects, an associator natural isomorphism.

The unitors must satisfy unitality and the associators must satisfy the pentagon axiom. (Full def here.)

Proposition 11.6. By some strictification procedure, weak 2-categories are equivalent to strict 2-categories.

Definition 11.7. Let C denote a strict 2-category enriched in groupoids. The nerve of C is the ∞-
category N coh(C′), whose objects are those of C and whose hom-spaces are defined by HomC′(x, y) :=
NHomC(x, y).

26Think about this.
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Proposition 11.8. Given a strict 2-category C enriched in groupoids, its nerve N(C) is a (2, 1)-category in
quasicategories, in the sense that all inner horns Λn

k → N(C) has a unique filler as soon as k ≥ 3 (c.f. HTT
2.3.4.9).

HTT 2.3.4 gives general information about (n-categories ∩ quasicategories). So does Cranch.

OK, that was what I wanted to know about 2-categories. We now consider spans in this context.

Definition 11.9 (Spans and their composites). Fix a category C. A span in C is a diagram X ← U → Y .
Given fixed X,Y , a morphism of spans between two spans (X ← U → Y ) → (X ← U ′ → Y ) is an

arrow U → U ′ such that the evident diagram commutes. Given fixed spans s := (X ← U
f−→ Y ) and

t := (Y
g←− U ′ → Z), we call a span X ← U ′′ → Z a composite of t with s if it is isomorphic to the outer

span in the below diagram.

V

U U ′

X Y Z
f g

⌟

If we have a functorial choice of pullbacks, we can define the composite t ◦ s as the outer span in that
diagram. We will do this.

Definition 11.10 (1-category of spans). Let C denote a category with pullbacks. We define 1Span(C) to
have the same objects as C, and for morphisms X → Y to be isomorphisms classes of spans X ← U → Y .
Composition is given by pullback, which is well-defined because we have taken isomorphism classes of
spans for morphisms.

Example 11.3. The category 1Span(FinSet) is the Lawvere theory for commutative monoids in Set. That is,
product-preserving functors 1Span(FinSet)→ Set are precisely commutative monoids. We may replace Set
with Top or sSet and ask what happens. Badzioch proved a “strictification" result: 1Span(FinSet)-models
in Top are equivalent to “up to weak equivalence" 1Span(FinSet)-models. It is well-known (c.f. MSE) that
the former (the topological abelian monoids) have the homotopy type of generalized Eilenberg-Maclane
spaces. For the purposes of studying algebraic theories in homotopy theory, this means 1Span(FinSet) is
not good enough, since an algebraic theory for commutative monoids should give us E∞-spaces.

Remark 11.11. Wait, but E∞-spaces are modeled as the special Γ-spaces, i.e., as functors FinSet∗ → Top
weakly satisfying the Segal condition. I thought these could be identified with product-preserving functors
out of 1Span(FinSet)? At least, I thought about this briefly when the target is Set, and Tomer spoke about
this in the∞-categorical case. But if this identification is possible 1-categorically, i.e., if

Fun×(1Span(Fin),Top) ∼= Funsegal(Fin∗,Top),

then we find a contradiction with Badzioch’s result, for it identifies the LHS with topological abelian
monoids while the RHS is E∞-spaces. I am probably mistaken, so that the ∼= does not exist. Let’s
assume I did not make a mistake identifying Fun×(1Span(Fin),Set) ∼= Funsegal(Fin∗,Set). Then why does
replacing Set with Top and weak-ifying the conditions on the functors destroy this equivalence? Somehow,
when we do this, the Segal condition has remained “good enough" to recover E∞-spaces, while the
product-preserving condition on functors out of 1Span(Fin) has not. Maybe this is because 1Span lacks
automorphism information (this is “stored 2-categorically," which we cannot access because we took
isomorphism classes), but perhaps that automorphism information does exist in the 1-categorical structure
of Funsegal(Fin∗,Top)?

My remark kind of spoiled the story. Spans are naturally 2-categorical, and we are missing crucial
information by flattening them to a 1-category. On the level of Set, this is inconsequential, but for studying
homotopy-coherent structures in∞-categories, this matters.

Definition 11.12 (2-category of spans). Let C be a category with pullbacks (and a functorial choice
of pullbacks). We define a weak 2-category 2Span(C) to have the same objects as C; to have spans
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as morphisms; and to have as 2-morphisms (i.e., morphisms of spans between two fixed X,Y ) the
isomorphisms of spans. The rest of the structure is more-or-less immediate. (Maybe c.f. this.)

This extra isomorphism data is important. And if we want to turn 2Span(C) into a quasicategory, we
should take these isomorphisms into account. First, we can turn 2Span(C) into a simplicial category: we
may form Span∆(C) to have the same objects as C and to have mapping simplicial sets MapSpan∆(C)(X,Y )

given by the groupoid of spans X → Y and isomorphisms between them. Finally, we can define

Span∞(C) := N coh(Span∆(C)).

Proposition 11.13 (Elementary description of Span∞(C)). Let C be a category with pullbacks. We will
construct a quasicategory Z equivalent to Span∞(C). Let Cn denote the poset of nonempty subintervals of [n],
with the reverse inclusion ordering. The mapping [n] 7→ Cn defines a cosimplicial object ∆→ Cat. Now define
Zn := the set of functors Cn → C with the pullback property: if I, J ⊆ [n] are such that I ∩ J ̸= ∅, then

F (I ∩ J) F (I)

F (J) F (I ∪ J)

is a pullback diagram. Since face and degeneracy maps respect pullbacks, the mapping [n] 7→ Zn extends to a
simplicial set Z : ∆op → C. The claim is that Z is a quasicategory and is isomorphic to Span∞(C).

Proof. Cranch, Prop. 4.5.

Remark 11.14. Given this description of Span∞(C), how does Span∞(C) compare to the ∞-category
Span(D,D†) which Barwick associates to an∞-category D with a coWaldhausen structure D†?

Definition 11.15. Suppose that C admits pullbacks. We define functors

Lid : C→ Span∞(C) and Rid : Cop → Span∞(C).

On 0-cells, these are the identity. On 1-cells f : X → Y , we define Lid(f) as the “left identity" span
X = X → Y . We define Rid dually.27

27By the previous proposition, Span∞(C) is the (homotopy coherent) nerve of a 2-category. A map NC → ND is precisely a
map C → D of 1-categories; can we pull a similar trick here? Regardless, I do not think it is hard to directly define Lid and Rid as
functors to Span∞(C). C.f. Cranch, Prop. 4.5.
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12 December

12.1 (12/11) Ambidexterity and semiadditivity recollection

I have been applying to grad schools and am nearly done. I forgot a bit what I was doing before, and my
interests are changing. I want to next explain the “Ambidexterity and height" paper. Let me remember and
fix some ideas, notation, human spirit. The writing here will be brief.

Example 12.1. Consider a finite group G, an abelian group A, and an action G → Aut(A). We have
tautological maps AG ↪→ A ↠ AG. We also have a norm map Nm : AG → AG given by [a] 7→

∑
G ga.

(Pointedly, think of as “at each a ∈ A/G, take fiber of A → A/G, sum over fiber." As we saw, this is
well-explained using spans!) The composite AG → AG → AG is multiplication by |G| =⇒ if A is a char p
vector space, then Nm cannot be an equivalence whenever p divides |G|. Turns out that if A is rational,
then Nm is always an equivalence.

Example 12.2. Analogous situation for finite G acting on spectrum A (i.e., Tate vanishing if A is rational,
not generally so if A is p-local). But now can also ask about “intermediary characteristic." That is, let G
act on K(n)-local A. Turns out, still have Tate vanishing! This is a surprise. Unlike the rational case, have
p = 0 in K(n)∗, yet we still have the isomorphism generally.

Other similar results, e.g., for T (n)-local spectra. Hopkins-Lurie: formal framework for capturing
these sorts of phenomena? It’s more likely than you think. Let’s rephrase the previous example:

Example 12.3 (The same example, pointedly reworded). Denote by p : BG → ∗ the projection, and
consider its pullback p∗ : SpK(n) → Fun(BG, SpK(n)). The pullback p∗ admits left and right adjoints,
which take E : BG→ SpK(n) to EhG and EhG, respectively. If A is a K(n)-local spectrum with G-action,
we get a functor A : BG → SpK(n). From this perspective, the norm N : AG → AG occurs as part of a
natural transformation

Nm : p! → p∗.

The previous example said the norm Nm : AG → AG was an isomorphism. In fact, this Nm : p! → p∗ is a
natural isomorphism.

This suggests the general setup. Let C denote any category and “relativize" by replacing p : BG→ ∗
with any map f : X → Y . We may still form the pullback f∗ : CY → CX and ask whether there exists an
adjoint triple

f! ⊣ f∗ ⊣ f∗.

These adjoints existed in our motivating cases, wherein the norm map was a morphism p! → p∗. But
for general C and f , the existence of f! and f∗ is nontrivial, and even if they exist, a priori there is no
canonical map f! → f∗. The is the fundamental problem. It is dauntingly general. But a simple observation
cracks the question wide open: if f is k-truncated, then its diagonal δ is (k − 1)-truncated. This is a first
step toward realizing a close relation between the theory of “abstract norms" and the higher algebra of C.

Let me explain this. Suppose that f is k-truncated. First, we want δ!, δ∗, f!, and f∗ to exist. A standard
detail is that these δ!, f! are left Kan extensions and δ∗, f∗ are right Kan extensions. Thus, they are given
by taking (co)limits over certain diagrams indexed by fibers. As f is k-truncated (resp. as δ is (k − 1)-
truncated), an easy way to make f!, f∗ exist (resp. for δ!, δ∗ to exist) is to assume C admits all (co)limits
indexed over k-truncated diagrams (resp. (k − 1)-truncated diagrams). In particular, if we suppose that
f is k-finite, then all the functors exist as soon as C admits all (co)limits indexed by k-finite spaces.
Analogously for δ.

We wanted conditions for f!, f∗ to exist because how else could we conceive of a norm map f! → f∗.
But why care about δ!, δ∗? Because there is a natural and canonical association

Map(δ∗, δ!)→ Map(f!, f∗)

built from (co)units and certain obvious(?) identities.28 In particular, if Nmδ is an equivalence, the norm
Nmf should be defined as that associated to Nm−1

δ . We still have no definition of Nmδ, though.
...However, a map f is (−2)-truncated if and only if it is an equivalence, in which case f!, f∗ are both

homotopy inverses to f∗ so we get a canonical f! ∼= f∗. In particular, if f is (−1)-truncated, then we define

28Identities relating the diagonal δ : X → X ×Y X and the projections X ×Y X → X.
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Nmδ : δ! → δ∗ as this canonical isomorphism, and we define Nmf as the transformation associated to
Nm−1

δ . All that is assuming the various functors left/right adjoints exist.
We have talked about the existence of f! and f∗ and the construction of Nmf : f! → f∗. The map

Nmf is constructed from the same data for δ (whose truncation order is one lower) with the additional
requirement that Nm−1

δ . In the base case (truncation order −2), the situation degenerates, and Nmδ is
automatically defined and is an isomorphism. Let’s collect all this (existence, duality, base case) into one
inductive definition.

Definition 12.1. Let C be any category and f : X → Y a map of Kan complexes.

1. Say that f is (−2)-ambidextrous if and only if it is an equivalence. In this case, define Nmf as
the canonical isomorphism f! ∼= f∗.

2. For n ≥ −1, say that f is weakly n-ambidextrous if and only if δ is (n− 1)-ambidextrous.

3. For n ≥ −1, say that f is n-ambidextrous if and only if

(a) f is weakly n-ambidextrous (so that Nm−1
δ exists),

(b) C admits (co)limits indexed by the fibers of f (so that f! and f∗ exist), and
(c) The map Nmf : f! → f∗ associated to Nm−1

δ is an equivalence.

Hence, ambidexterity is about norms—when they exist and are isomorphisms. We may say that f is
C-ambidextrous if it is n-ambidextrous for some n. Let us investigate this notion for various f .

Example 12.4. Suppose that a map f is (−1)-truncated (i.e., its fibers are empty or contractible). Is it
(−1)-ambidextrous? Since δ is (−2)-truncated it is an equivalence, so Nmδ is an equivalence and f is
weakly (−1)-ambidextrous. For f to be (−1)-ambidextrous, C must admit f -limits and f -colimits so that
f! and f∗ exist, which means admitting (co)limits over all empty and singleton diagrams. This amounts to
C having initial and final objects. It turns out that if these coincide, i.e. if C is pointed, then Nmf is an
equivalence, in which case f is (−2)-ambidextrous.

Example 12.5. Suppose that a map f is 0-truncated (i.e., its fibers are disjoint unions of contractible
spaces). Further assume that C is pointed, so that Nmδ is automatically an equivalence by the previous
example (since δ is (−1)-truncated). In order for f! and f∗ to exist and thus for Nmf to be defined,
C must admit f -(co)limits, which amounts to C having countable (co)products. It turns out that if
countable (co)products coincide, i.e. if C admits biproducts, then Nmf is an isomorphism and so f is
(−1)-ambidextrous.

Example 12.6. Suppose that f is 0-truncated and the fibers of f are finite. By the same argument as
above, if C is pointed, then f is weakly 0-ambidextrous, and if C admits finite biproducts, then f is
0-ambidextrous. We generally like to impose such finiteness conditions on f because it is much easier
for C to satisfy the conditions for Nmf to be an equivalence. In this case, it is the difference between
having countable versus finite biproducts—that is significant! For example, Ab has finite but not countable
biproducts.

Example 12.7. Suppose that f is 1-truncated and that its fibers have finite homotopy groups. Thus,
its fibers are of the form

∐N<∞
i=1 BGi where each Gi is finite. Since δ is 0-truncated and its fibers are

finite, by the previous example Nmδ is an equivalence once C admits finite biproducts, in which case f
is weakly 1-ambidextrous. In order for f! and f∗ to exist and thus for Nmf to be defined, C must admit
f -(co)limits, which amounts to admitting (co)limits indexed by spaces of the form

∐N<∞
i=1 BGi with Gi

finite. If C = SpK(n) for n ̸= ∞, the classical theorem of [HS96] and [GS96]says that for G finite, the
norm Nmp associated to p : BG→ ∗ is an equivalence, in other words that p : BG→ ∗ is 1-ambidextrous.
The power of our “abstract norm formalism" is that we can now say that the only necessary hypotheses for
this result are that p : BG→ ∗ is 1-truncated and has π∗-finite fibers. Indeed, it turns out that if C = SpK(n)

and f : X → Y is any such map, then f is 1-ambidextrous. In fact, Hopkins-Lurie proves much more.

Theorem 12.2. If C = SpK(n) and f : X → Y is n-finite (to mean that it is n-truncated and its fibers have
finite homotopy groups), then f is n-ambidextrous. In other words, for such f , the norm

Nmf : f! → f∗

is an isomorphism.

65



Some remarks are in order. First, truncation order seems to be the right property by which to organize
and study ambidexterity (more sophisticated results would confirm this). Second, as in Examples 12.6
and 12.7, it seems right to further restrict to the notion of n-finite maps, to mean any f : X → Y whose
fibers are all n-truncated and have finite homotopy groups. For without finiteness, it is harder for C to
admit all f -(co)limits and thus for Nmf to exist, and much harder for f -(co)limits to coincide and thus for
Nmf to be an equivalence. These two points in mind and considering the theorem, it is natural to ask:
given n ≥ −2, which categories C are such that all n-finite maps are C-ambidextrous?

Definition 12.3. For m ≥ −2, say that a category C is m-semiadditive if every m-finite map is C-
ambidextrous.

This is a great definition. We know that for a chosen f , the existence of f! and f∗ is about the
existence of (co)limits indexed by its fibers, and that Nmf is an isomorphism once these (co)limits
canonically coincide. Hence, m-semiadditivity is about when a category C admits canonically isomorphic
limits and colimits for every m-finite diagram X → C (the isomorphism being the norm map associated to
p : X → ∗, which is Nmp : colim−→X = p! → p∗ = limX).

(Insert story: semiadditivity in ordinary situation is about commutative monoids, this “higher
semiadditivity" leads us to realize “higher monoids," thus norms are related to semiadditivity are related
to higher algebra of C.)

66



Bibliography

[Fri08] Greg Friedman. An elementary illustrated introduction to simplicial sets. 2008.

[Lur22] Jacob Lurie. Kerodon. https://kerodon.net, 2022.

[Mat] Akhil Mathew. The dold-kan correspondence. https://math.uchicago.edu/~amathew/
doldkan.pdf.

[Rie] Emily Riehl. A lesuirely introduction to simplicial sets. https://math.jhu.edu/~eriehl/ssets.
pdf.

67

https://kerodon.net
https://math.uchicago.edu/~amathew/doldkan.pdf
https://math.uchicago.edu/~amathew/doldkan.pdf
https://math.jhu.edu/~eriehl/ssets.pdf
https://math.jhu.edu/~eriehl/ssets.pdf

	I 2022
	1 December
	1.1 (11/28) Ok, let's give this a try
	1.2 (12/1) Why simplicial sets, simplicial complexes
	1.3 (12/4) Basic structure in sSet
	1.4 (12/6) Colimits in/functors out of sSet
	1.5 (12/23) The singular complex and geometric realization


	II 2023
	1 January
	1.1 (1/23) Plans have changed, nerves of categories
	1.2 (1/26) Spines
	1.3 (1/30) Inner Horns

	2 February
	2.1 (2/4) Quasicategories
	2.2 (2/6) Sub, opposite quasicategories
	2.3 (2/7) Examples of -categories
	2.4 (2/8) The fundamental category of a simplicial set
	2.5 (2/9) Homotopy for -categories 
	2.6 (2/12) About composition in -categories 
	2.7 (2/13) Isomorphisms and inverses in -categories 
	2.8 (2/13) -groupoids, cores, and Kan complexes
	2.9 (2/15) The functor quasicategory
	2.10 (2/16) Lifting properties time — weakly saturated classes
	2.11 (2/16) Classes of horns, anodyne morphisms
	2.12 (2/16) Lifting calculus
	2.13 (2/17) Inner fibrations
	2.14 (2/20) Factorizations
	2.15 (2/21) Factorization systems and unique lifts
	2.16 (2/23) Degenerate cells
	2.17 (2/23) The skeletal filtration
	2.18 (2/25) Pushout-products, pullback-homs

	3 March
	3.1 (3/5) Pullback-hom as an enriched lifting problem

	4 April
	5 May
	5.1 (5/3) Operads for (Peter) May
	5.2 (5/5) Basic examples of operads
	5.3 (5/6) Warm-up: monoids are A ssoc-algebras
	5.4 (5/9) Associativity up to homotopy, Stasheff associahedra, and A-operads
	5.5 (5/11) An-operad stuff
	5.6 (5/13) Rings via operads?
	5.7 The rest of May

	6 June
	6.1 (6/13) June activities, monoidal categories
	6.2 (6/15) Initial, final objects
	6.3 (6/18) Stable -categories
	6.4 (6/20) Idempotents
	6.5 (6/21) I hate idempotents today. K-theory?
	6.6 (6/26) Structure of HomC(-,-) for (various adjectives) categories
	6.7 (6/28) Anima and other examples of -categories via Nc

	7 July
	7.1 (7/5) Derived -categories I
	7.2 (7/21) Ambidexterity I
	7.3 (7/25) Ambidexterity II
	7.4 (7/30) Ambidexterity III

	8 August
	9 September
	9.1 (9/15) Semiadditivity I
	9.2 (9/18) Semiadditivity II
	9.3 (9/24) Just monoids

	10 October
	10.1 (10/8) The back and the shoulder joint
	10.2 (10/16) Semiadditivity for -categories
	10.3 (10/19) Higher semiadditivity: a first take
	10.4 (10/21) Higher monoids via of finite spaces
	10.5 (10/24) How to feel a higher monoid
	10.6 (10/26) Categorical properties of spans of finite spaces
	10.7 (10/28) Baby norms
	10.8 (10/31) Kan extensions

	11 November
	11.1 (11/2) Algebraic theories and their models
	11.2 (11/4) Recap, why algebraic theories, rigs, spans?
	11.3 (11/6) Spans

	12 December
	12.1 (12/11) Ambidexterity and semiadditivity recollection



