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ABSTRACT. Sheaves and their cohomology have transformed the study of com-
plex and algebraic geometry over the last eighty years. The classical formulation
of sheaf cohomology proceeds by a combinatorial construction on open covers and
is now called Čech cohomology. The modern formulation is categorical, utilizing
derived functors. This paper is a technical exposition of the modern approach with
modest prerequisites.
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CONTENT

This paper is a development of sheaf cohomology using derived functors. The
reader should know basic category theory and homological algebra. No back-
ground is assumed about sheaves, abelian categories, or derived functors. Except
where stated, no texts are closely followed, but definitions come from [3], [10],
and [17].

We open with a brief historical overview of the context in which sheaf cohomol-
ogy and derived functors arose. The purpose is to motivate what at first seems
like a grab bag of esoteric machines. It is based on the historical articles [5], [13],
and [19], as well as the original Tohoku paper [8] and letters between Serre and
Grothendieck [6].

In §1, we introduce the very basics of sheaves, with examples.
In §2, we define an abelian category. The definition itself is preceded by a dis-

section of the categorical properties of ModR which make homological algebra
“work,” so that each stipulated property of an abelian category is justified.

In §3, we define the derived functors of a functor between abelian categories. The
content here is our motivation of the definition, framed as a search for a cohomology-
like measurement of a functor’s non-exactness. An interesting point about this
section is that we deduce the need for injectives. This exposition is partly based on
that in [9, Chapter 2, §2], although substantially simplified.

In §4, we define sheaf cohomology using derived functors. We first introduce the
category of sheaves of modules and review its abelian structure. Noting the dis-
crepancy between kernels and cokernels in this category, it starts becoming clear
why derived functors should be useful for studying local-global problems. In the
process, sheaf cohomology is defined as the derived functor of the global sections
functor.
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HISTORICAL NOTES

While prisoner at an officer camp in Austria throughout World War II, Jean
Leray posed as an algebraic topologist so that his expertise in analysis would not
volunteer him to aid the Nazi War Machine. The ideas he conceived there would
prove important, at times totally indispensable, to the course of algebraic topology
and modern complex and algebraic geometry. Namely, he defined sheaves and
their sheaf cohomology.

Around the same time, algebraic topology was seeing an organizational prob-
lem. (Co)homology theories abound, absent uniform foundations. Mac Lane and
Eilenberg introduced category theory as a language to express ideas in algebraic
topology. Then during the 1948-51 Séminare Cartan, more foundational work
would be done to expound on and unify the algebraic constructions being used
ad hoc to study specific (co)homologies. These ideas collated into H. Cartan and
Eilenberg’s influential Homological Algebra (1956), where the subject got its name.

This homological algebra closely resembled ours today. A glaring limitation,
however, is that Cartan and Eilenberg restricted their functors to modules. This
was largely superficial. Yet a generalization had not been fully realized, partly
since it was not clear when homological algebra could be carried out in other cat-
egories.1

Enter Grothendieck. Anticipating Homological Algebra but without access to it,
he developed the subject himself. The result was his landmark Tōhoku paper,
which begins with a development of the abelian categories in which homological
algebra makes sense, based on discussions at the Séminare Cartan in 1948-49. An
upshot was that derived functors, originally defined over modules, could be used
to formulate a notion of cohomology in any abelian category.

Yet the development of this machinery constituted only about a third of Tōhoku.
Indeed, Grothendieck was not fixated on the generalization itself, rather its use in
taming a particular abelian category: Leray’s sheaves. Sheaves and their cohomol-
ogy had facilitated several recent mathematical successes—Serre had just demon-
strated their unusual effectiveness for studying varieties, and Cartan had done
something similar for complex manifolds. In Tōhoku, Grothendieck fit sheaves
into the framework of abelian categories, streamlining their use and formulation.
All this pushed an installment of sheaf-theoretic and cohomological methods into
algebra, number theory, and geometry.

1David Buchsbaum, then a doctoral student of Mac Lane, refined a definition of Mac Lane’s for
categories similar to ModR and showed how the theory in Homological Algebra translated practically
verbatim across them [4]. This happened sometime while the text was being written, and its appendix
includes Buchsbaum’s work. But the full potential of this generalization would only be realized by
Grothendieck, who independently redeveloped much of Buchsbaum, Cartan, and Eilenberg’s work.
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1. PRESHEAVES AND SHEAVES

Sheaf cohomology detects obstructions to the process of stitching together local
constructions into global ones. To get there, we must make precise what we mean
by ‘local’ and ‘global’ constructions and organize them in a way that is vulnerable
to homological algebra. For this we use sheaves and presheaves.

A (pre)sheaf tracks data (groups, rings, modules, ...) attached to the open sets
of a topological space with a notion of locality relative to that space. Relations
between data are analogous to the covering relations between their underlying
open sets. The extent to which this analogy holds can vary; a presheaf does the
bare minimum, demanding just functoriality with respect to inclusions.

Definition 1.1. Let X be a topological space, D a category. A D-valued presheaf F

on X is a contravariant functor F : Open(X) → D, whose source is the category
consisting of open subsets of X and their inclusions. Equivalently, it consists of the
following data.

(1) For each open set U of X, an object F(U). Elements2 of F(U) are called
sections of F over U. Elements of F(X) are called global sections.

(2) For each inclusion of open sets V ⊆ U, a morphism rVU : F(U) → F(V).
This assignment must occur in such a way that rUU = idF(U) and if W ⊆
V ⊆ U then rWU = rWV ◦ rVU. These are called restriction morphisms. In
context, we use the more familiar notation |V in place of rVU.

Provided a presheaf and the data it specifies on an open set, we may partially3

recover the data of subsets via restrictions. In the reverse, another desirable and
vaguely geometric property—which a presheaf may or may not have—is that the
data of an open set be recoverable from the data of an open cover. A sheaf is a
presheaf with this property.

Definition 1.2. A D-valued sheaf is a D-valued presheaf satisfying two axioms.

(1) (Identity) Let U be any open covering of any open set U. If s, t ∈ F(U) are
such that s|Ui = t|Ui for each Ui ∈ U , then s = t.

(2) (Gluing) Let U be any open covering of any open set U. If one can choose
a section si from each Ui such that si, sj agree when restricted to Ui ∩Uj
for each i, j, then there is a section s ∈ F(U) such that s|Ui = si for each i.

Remark 1.3. Usually, the target category of (pre)sheaves is Set, Ab, CRing, or ModR.
In these cases, we get (pre)sheaves of sets, abelian groups, commutative rings, or mod-
ules, respectively.

Definition 1.4. A morphism of presheaves is a natural transformation of the respec-
tive functors. In other words, a morphism of presheaves ϕ from F to G consists of

2We are assuming our objects have sets underlying them. One phrases this precisely as requiring D
to embed faithfully into Set, also called concreteness. In this paper and in many applications, sheaves
always land in a concrete category.

3Even for sheaves, restrictions need not be surjective.
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maps ϕU : F(U) → G(U) for each U such that whenever V ⊆ U, the diagram

F(U) G(U)

F(V) G(V)

rVU r ′VU

ϕU

ϕV

commutes. A morphism of sheaves is defined the same way.

Thus we may speak of the category of (pre)sheaves (with values in some chosen
category) on a topological space X. We denote the category of (pre)sheaves of
abelian groups by PSh(X) and Sh(X), respectively.

Example 1.5 (Sheaf of continuous functions). Let X be a topological space. The
assignment U 7→ {continuous f : U→ R} is a sheaf of rings. Here, one can replace
‘continuous’ with Cr or C∞.

Example 1.6 (Presheaf fixed at two points). Let S1 denote the circle, p 6= q distinct
points on it. The assignment U 7→ { continuous f : U → R such that f(p) = f(q)}

is a presheaf on S1. Note that the condition that f(p) = f(q) is vacuous unless
p,q ∈ U. Covering S1 by two open sets U,V , neither containing both p and q, we
have sections of U and V agreeing on overlap but disagreeing at p and q; these do
not glue into a global section, hence the assignment is not a sheaf.

Example 1.7 (A constant presheaf). Let X be a topological space, G a nontrivial
abelian group, and F the assignment U 7→ G. This F is a presheaf, the restrictions
being identity homomorphisms. To see whether F is a sheaf, cover the empty
set by the empty union, i.e. with no sets. Vacuously, two distinct elements of
F(∅) = G fulfill the identity axiom’s hypothesis, but we took them to be distinct;
therefore the identity axiom does not hold and F is not a sheaf.

Example 1.8 (Presheaf of constant functions). Let F be a presheaf onX = (−∞, 0)∪
(0,∞) assigning to each open set U the ring of constant functions f : U → R. Let
I = (−∞, 0) and J = (0,∞) have the usual topologies. Any two non-equal constant
functions s ∈ F(I) and t ∈ F(J) vacuously agree on I ∩ J = ∅, yet s and t do not
glue into a constant function of X. Thus F is not a sheaf.

Example 1.9 (Presheaf of bounded functions). LetU be an arbitrary open subset of
R and F the assignment U 7→ {bounded f : U → R}. This is a presheaf on R, with
restriction maps being restrictions of domain. Take any unbounded g : R → R;
restricted to the parts of an open covering of R by bounded intervals, one gets
bounded R-valued functions, hence sections of F. Yet they glue into g, which is
not a global section. Thus F is not a sheaf.

Remark 1.10 (Sheafification). We generally want to work with sheaves, but even
simple presheaves often fail the sheaf axioms, as the examples show. Fortunately,
presheaves and sheaves enjoy a special relationship: there exists a left adjoint to
the inclusion Sh(X) ↪→ PSh(X). This means we can canonically construct, for each
presheaf, its ‘best approximation’ as a sheaf.

Strictly speaking, this adjunction is not needed to define sheaf cohomology, so
we will move on. But let us make two points: it first of all is not hard to explicitly
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define sheafification, see e.g. [18, Chapter 4]. Second, there is useful and illuminat-
ing theory regarding sheafification the reader may enjoy, which gives a historical
and geometric perspective of sheaves through espace étalé, see e.g. [11].
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2. ABELIAN CATEGORIES

The prototypical stomping ground for homological algebra is the category Ab
of abelian groups, or generally the category ModR of modules over a commutative
ring R. One of Grothendieck’s motivations for studying abelian categories was to
show that Ab and ModR, and crucially Sh(X), are instances of the same thing, over
which one can do most homological algebra generally. This streamlines the theory
and reveals the essential structure of the situation.

Before stating the definition, let us ruminate on our homological wants and
needs. Our models are Ab and ModR. Both have a zero object, those being the trivial
group and zero module, respectively. Then one can define kernels and cokernels,
and they exist and behave as we expect them to (e.g. there is a snake lemma, or a
first isomorphism theorem.)

There are also some subtler facts we enjoy in Ab and ModR worth explicating.
Firstly, morphisms between objects have an abelian group structure; for any f,g :
X → Y one can form their sum (f+ g) : X → Y, and this operation has the usual
properties. Furthermore, morphisms compose bilinearly, meaning

h ◦ (f+ g) = h ◦ f+ h ◦ g, and

(f+ g) ◦ h = f ◦ h+ g ◦ h.

Getting categorical, these two facts together imply finite coproducts (direct sums)
and finite products (direct products), defined by their universal properties, coin-
cide when either exists [12]. When either exists, we may describe f+ g using the
properties of (co)products: if f,g : X→ Y, we have commutative diagrams

X Y Y
∐
Y Y

Y Y × Y Y Y

f g

π1 π2

∃!q

i1 i2

idY idY

∃!p

Here, q is induced by f and g, and p by idY . Since Y × Y ∼= Y
∐
Y, we refer to them

unambiguously as Y ⊕ Y, and we treat p ◦ q as a map from X to Y. It turns out that

f+ g ∼= p ◦ q.

Stipulating the bilinearity of morphisms and the group structure of hom-sets, this
construction of p ◦ q still requires the existence of the finite (co)product Y ⊕ Y. All
finite (co)products exist in Ab and ModR, and this is another property we ask of
abelian categories.

Definition 2.1. Consider the following axioms a category may satisfy.

(PA1) Every hom-set has an abelian group structure.
(PA2) (PA1), and compositions of morphisms are bilinear with respect to the

group structure of hom-sets.
(A) (PA2), and it has all finitary (co)products. As a consequence of (PA2), we

can refer to (co)products synonymously as biproducts.
(AB0) It has a zero object. This is an object with exactly one morphism to and from

every other object.
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(AB1) (AB0), and it has all kernels and cokernels. A kernel of a morphism f : X→ Y
is an object K and a map k : K → X such that f ◦ k = 0, and such that it is
universal in that respect. A cokernel is dual.

(AB2) (AB1), and for every morphism f : X → Y its coimage (kernel of cokernel)
and image (cokernel of kernel) are isomorphic. In particular, the canonical
morphism from the coimage to the image is an isomorphism.

A category satisfying (PA2) is called preadditive. A category satisfying (A) is called
additive. A category satisfying (A) and (AB2) is called abelian.

These axioms are enough to recast the language of homological algebra over
modules to any abelian category. In particular, one has general exactness, complexes,
chain homotopies, and cohomology objects. Standard facts generalize too, e.g. the
snake lemma. We leave the details to standard homological algebra texts, see for
instance [8] or [14]. To read the rest of this paper, it suffices understand these ideas
in the context of modules or groups.

Remark 2.2. In fact, in many cases it is formally sufficient to understand homolog-
ical algebra in the context of modules. This is the Freyd-Mitchell embedding theorem.
It states that for each small abelian category, there exists some commutative ring R
such that there is a full, faithful, exact functor from that category to ModR. Hence,
diagram-chasing can be a legitimate proof technique, even if the category of inter-
est has no such concept. For details, see [7].
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3. DERIVED FUNCTORS

A fundamental problem in algebraic topology is to understand how certain
complexes fail to be exact. Since exactness has meaning in any abelian category, we
may ask how functors between abelian categories fail to preserve exactness. Amaz-
ingly, there is a universal way to quantify this failure, and we call the quantifier
a derived functor. Derived functors give a unified approach to many important
(co)homological theories; for example, the Ext/Tor groups and the sheaf cohomol-
ogy groups. Our plan is to take the derived functor of the global sections sheaf to
produce the latter.

3.1. Motivation. The initial oddity is that many important functors fail to pre-
serve exact sequences in a small way. Namely, for a functor F between abelian
categories, it may be that

0→ A→ B→ C→ 0 and

(3.1) 0→ F(A) → F(B) → F(C)

are exact in A and B, respectively, but not necessarily so if one completes (3.1) into
a short sequence by appending → 0.

Definition 3.2. A functor F between abelian categories is called left exact if for
every short exact sequence 0 → A → B → C → 0 in the source, the sequence
0 → F(A) → F(B) → F(C) is exact in the target. One defines a right exact functor
similarly. An exact functor is both left and right exact.

To measure how F fails to be exact, we look for an extension of (3.1) into a long
exact sequence. (If F is exact, we may simply extend it by → 0’s.) Since there are
often many silly ways to extend (3.1), we look specifically for an extension that
resembles cohomology. We also hope for a universal such extension.

Desirable Properties. Let F : A → B be left exact. Consider the following properties
a sequence of functors {RiF : A → B}i≥0 may have.

(1) There is a natural isomorphism R0F ∼= F.
(2) For every SES 0 → A → B → C → 0, there are morphisms δ : RnF(C) →

Rn+1F(A) so that the following sequence is exact.

0 F(A) F(B) F(C)

R1F(A) R1F(B) R1F(C)

R2F(A) · · ·

δ

δ

(3) Morphisms between SES in A functorally induce morphisms between the
LES from (1) in B.

(4) (Universal Property) If {R̃iF} is any other sequence of functors fulfilling
(1)-(3), then there is a natural transformation RiF =⇒ R̃iF.

Hereafter suppose RiF has the above properties. We can glean a constructive
definition of RiF by looking at the objects A for which RiF(A) = 0 for all i.
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Definition 3.3. Let F be left exact, RiF satisfying properties (1)-(4) as above. An
object A is called RiF-acyclic if RiF(A) = 0 for all i. For an object X, an acyclic
resolution of X is an exact sequence

0→ X→ A0 → A1 → · · ·
Where the Ai are acyclic.

Lemma 3.4 (Lemma 2.3.6, [9]). Let F,RiF be as in Definition 3.3. For an object X and
any acyclic resolution A•, there is an isomorphism

RiF(X) ∼= Hi(F(A•)).

Sketch of Proof. The proof is by induction. Noting that A• is acyclic, one looks at
the long exact sequence of derived functors. Exactness properties apply, and the
isomorphism is obtained by routine homological algebra.

Thus, the image under F of any RiF-acyclic resolution of X has cohomology
isomorphic to RiF(X). But acyclic objects are defined relative to RiF, so this seems
circular. A crucial observation about split sequences and injective objects neverthe-
less makes it work.

Definition 3.5. We call a short exact sequence 0 → A → B → C → 0 split if there
is an isomorphism f : B→ A⊕C such that the following diagram commutes.

0 A B C 0

0 A A⊕C C 0
i p

idid f

Definition 3.6. An object I in a category is called injective if for every morphism
f : X → I and every monomorphism g : X → Y, there exists a morphism h : Y → I
such that f = h ◦ g.

Lemma 3.7. If 0→ I→ B→ C→ 0 is short exact and I is injective, then it splits.

Lemma 3.8. Left and right exact functors take split exact sequences to split exact se-
quences.

Now, given an exact sequence 0 → I → B → C → 0 with I injective, it must
split, and hence left exact F will take it to an exact sequence. But RiF measures de-
viation from exactness and is universal in this sense, implying Ri(I) = 0 for i > 0.
Thus injectives are acyclic irrespective of F. For this reason, we ought to compute
RiF with injective resolutions, but an object need not have such a resolution. A
reasonable assumption rules out this possibility.

Definition 3.9. A category is said to have enough injectives if every object X admits
a monomorphism into an injective object.

If an abelian category has enough injectives, then any object X has an injective
resolution obtained by inductively collating the maps induced (à la the defining
property of injective objects) by canonical quotient maps into quotient objects.

Example 3.10. Injective modules were introduced by Baer in a 1940 paper [1]. Of
primary interest to him was the fact that injective modules are direct summands
of any containing module. In the paper, Baer proved that for a ring R, the category
ModR has enough injectives.
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3.2. Construction and Properties. The discussion above motivates the following
definition.

Definition 3.11. Let F : A → B be a left exact functor whose source has enough
injectives. For each object X ∈ A, fix an injective resolution 0→ X→ I0 → · · · and
consider the sequence

(3.12) 0→ F(I0) → F(I1) → · · ·
obtained by applying F and composing the maps 0 → F(X) → F(I0). Define the
i-th right derived functor of F at X as the cohomology of (3.12) at the i-th spot, i.e.

RiF(X)
def
=

ker(F(Ii) → F(Ii+1))

im(F(Ii−1) → F(Ii))
.

Theorem 3.13. Let F : A → B be as in Definition 3.11.
(1) Different choices of injective resolutions of objects in A yield naturally isomorphic

right derived functors RiF.
(2) Morphisms f : X → Y naturally induce morphisms RiF(X) → RiF(Y), so that

the right derived functors are functors.
(3) There is a natural isomorphism F(X) ∼= R0F(X).
(4) For I injective, RiF(I) = 0 for i ≥ 1.
(5) For each short exact sequence 0 → A → B → C → 0 in A, there are connecting

morphisms δ : RiF(C) → Ri+1F(A) making the following sequence is exact.

0 F(A) F(B) F(C)

R1F(A) R1F(B) R1F(C)

R2F(A) · · ·

δ

δ

(6) Furthermore, the connecting morphisms are such that for any morphism between
SES in A, the functors RiF commute with the connecting morphisms. In effect,
morphisms of SES functorally induce morphisms between the LES from (5).

Sketch of Proof.
(1) In general, a morphism between objects in an abelian category lifts to a

morphism between injective resolutions of those objects, i.e. a collection
of maps between objects in a resolution commuting with the maps in the
resolutions. For two resolutions of the same object, the identity morphism
induces a pair of morphisms between resolutions which constitute a ho-
motopy equivalence. Chain homotopic complexes have isomorphic coho-
mology.

(2) The lifting described in (1) is unique up to homotopy. The resulting chain
map gives the induced map on right derived functors.

(3) Since F is left exact, 0→ F(X) → F(I0) → F(I1) is exact.
(4) For I injective, the sequence 0 → I → I → 0 is injective, so that RiF(I) = 0

for i > 0.
(5) See [3, Theorem 2.17] and the discussion afterward.
(6) Same as (5).
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4. SHEAF COHOMOLOGY AS A DERIVED FUNCTOR

We set out to measure how local constructions fail to amass into global ones.
This is not unlike asking how the (functorial) process “map a sheaf to its global
sections” fails to be exact, with sheaves the ambient category. In fact, this is exactly
the right question, and our homological tools from §2-3 will facilitate an answer.
But we need a suitable abelian category and global sections functor.

4.1. The Abelian Structure of OX-Mod. Let D be a category. Recall from §1 that
D-valued sheaves on a topological space form a category. In general, this category
is not abelian, but it is so for a particularly important and flexible class of sheaves,
namely sheaves ofOX-modules. These include sheaves of abelian groups as a special
case. They form a category in the most straightforward way.

Definition 4.1. Let X be a topological space and OX a sheaf of commutative rings
on it. We call the pair (X,OX) a ringed space and OX its structure sheaf.

Definition 4.2. Let (X,OX) be a ringed space. A sheaf of OX-modules, or simply an
OX-module, is a sheaf of abelian groups F fulfilling the following properties.

(1) For each open U ⊆ X, the group F(U) is an OX(U)-module.
(2) For every inclusion of open sets V ↪→ U, the restriction map F(U) → F(V)

is compatible with module structures: for f ∈ OX(U) and s ∈ F(U), the
restriction map r satisfies r(fs) = r(f)r(s).

Definition 4.3. Let (X,OX) be a ringed space. Denote by OX-Mod the category of
OX-modules. Its objects are OX-modules and its morphisms are sheaf morphisms
with the additional requirement that their constituent maps OX(U) → OY(U) be
module homomorphisms for all open U.

Theorem 4.4. The category OX-Mod is abelian. Furthermore, it has enough injectives.

We rinse our hands of the homological-categorical details implicit in this theo-
rem; those can be found in [3] or [16, 01AF]. But let us review the basic abelian
structure of OX-Mod: the zero OX-module is the one assigning the trivial module
to every open set. The sum of two morphisms of OX-modules adds the two maps in-
duced on modules. The kernel of a morphism takes the kernel of the induced module
homomorphisms.

Cokernels are less straightforward. Given a morphism ϕ : F → G of OX-
modules, the assignment U 7→ coker(ϕU : F(U) → G(U)) does not generally
define a sheaf, only a presheaf. The category lover is saved: one sheafifies4 this
presheaf into a sheaf that functions as a perfectly good cokernel. But the process
has perturbed the definition of a cokernel in OX-Mod. Consequently, surjective
sheaf morphisms are more nuanced than injective sheaf morphisms.

Definition 4.5. Let (X,OX) be a ringed space. Let ϕ : F → G be a morphism of
OX-modules.

• One says ϕ is injective if for every open set U ⊆ X, ϕU : F(U) → G(U) is
injective as a module homomorphism.

4Sheafification is the functor left adjoint to the inclusion of sheaves into presheaves. It produces the
‘best approximation’ to a presheaf by a sheaf. Recall Remark 1.10.

https://stacks.math.columbia.edu/tag/01AF
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• One saysϕ is surjective if for every open setU ⊆ X, every section s ∈ G(U),
and every point x ∈ X, there is an open neighborhood V ⊆ X of x such that
sV = ϕV (t) for some section t ∈ F(V).

Remark 4.6 (Other definitions of inj/surjective). It is clear from this definition of
injectivity and surjectivity how the two differ—in other words, how sheafifying
has made the situation interesting. Here are two equivalent and more common
definitions in which the discrepancy is opaque:

(I) At each x ∈ X, the stalk of F at x is Fx := colimUF(U). This colimit is
taken over allU ⊆ X containing x. The morphismϕ : F → G induces maps
ϕx : Fx → Gx, and we sayϕ is injective or surjective if everyϕx is injective
or surjective, respectively.

(II) Defining the kernel and image sheaves of ϕ as above (recall the latter is
the sheafification of the naive image presheaf), we say ϕ is injective or
surjective if kerϕ ∼= 0 or imϕ ∼= G, respectively.

4.2. Sheaf Cohomology. Surjectivity of sheaf morphisms only requires that sec-
tions lift locally. This is crucial, for given a surjectionϕ : F → G, it becomes possible
that a section of G(X) may not lie in the image ofϕX. This models many geometric
local-to-global problems, and derived functors apply readily. Consider the short
exact sequence

(4.7) 0 −→ kerϕ −→ F
ϕ−−→ G −→ 0

We hit this with the global sections functor Γ(X,−) sending a sheaf to its global sec-
tions. This functor is left-exact, so we can take its derived functors and get a long
exact sequence

0→ Γ(X, kerϕ) −→ Γ(X,F) −→ Γ(X,G) −→ R1Γ(kerϕ) −→ R1Γ(F) → · · ·
And finally, we define the sheaf cohomology functors Hi(X,−) to be these derived
functors RiΓ(−). This cohomology describes, e.g. via the long exact sequence,
the relationship between local and global sections of sheaves. For example, if
H1(X, kerϕ) = 0 above, then Γ(X,−) preserved surjectivity in (4.6), so every global
section of G lifts to a global section of F.

Remark 4.8. Computing sheaf cohomology takes some work. The definition by in-
jective resolutions is not used directly. One feasible option is to calculate a space’s
Čech cohomology, which proceeds by combinatorial constructions on open covers.
For paracompact spaces, Čech and sheaf cohomology agree [14, Theorem 6.88].
Čech cohomology outdates derived functors, and some sources define sheaf coho-
mology as Čech cohomology, e.g. Serre’s FAC [15]. Čech cohomology is treated
extensively in literature, see for instance [2], [3], [14], or [15].
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